LYCÉE REMADA TATAOUINE

Année Scolaire : 2017 - 2018

Date: 13 Avril 2018

Prof: M^r Hamdi Zantour Classe: 3 ème économie Durée: 90 minutes

Devoir de contrôle N°4

MATHÉMATIQUES

Exercice 1 (4 points)

Pour chacune des questions suivantes une seule réponse est exacte, cocher la bonne case.

Questions	Réponses
1. La limite à gauche en 5 de la fonction f définie par :	□ -7
$f(x) = \frac{8 - 3x}{\sqrt{(5 - x)^3}}$ est égale à	\Box $-\infty$
$\sqrt{(5-x)^3} \text{ost sgare a}$	\Box + ∞
2. A l'entrée d'un immeuble, un digicode comporte 12 touches	\square 10 ⁴
principales : les chiffres de 0 à 9 et les lettres A et B . Un code d'accès à cet immeuble est constitué de 4 caractères (une lettre	$\square \ 2 \times 10^4$
suivie de trois chiffres). Le nombre de codes possibles vaut	$\square \ 2 \times 10^3$
3. Soit g la fonction définie par : $g(x) = \frac{-x^3}{(1-x)^3}$	$\square x = 1$
Au voisinage de $-\infty$, la courbe \mathscr{C}_g de g admet comme asymptote	
la droite d'équation :	$\square y = 1$
$\begin{cases} 7x + 8y = -8 \\ 4 & \text{I a déterminant du quetème} \end{cases}$	□ -91
4. Le déterminant du système (S) : $\begin{cases} 7x + 8y = -8 \\ 7y - 5x = 6 \end{cases}$	□ 89
est égal à	□ 9

(Exercice 2) (6 points)

On se donne la fonction f définie par : $f(x) = 1 + x + \sqrt{1 + x^2}$ On désigne par \mathscr{C}_{x} se courbe représentative dans un repère (O)

1. Montrer que f est définie et continue sur tout \mathbb{R} .

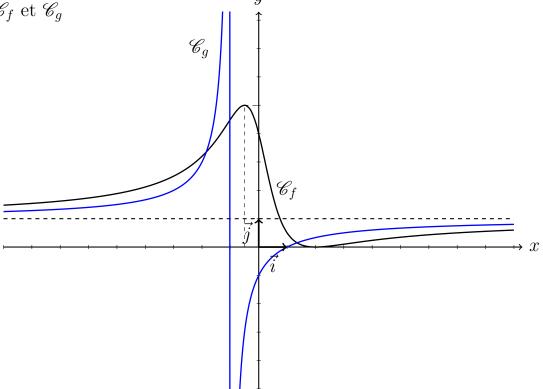
- On désigne par \mathscr{C}_f sa courbe représentative dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$.
 - 2. a/ Calculer $\lim_{x\to +\infty} f(x)$.
 - b/ Calculer $\lim_{x \to +\infty} [f(x) 1 2x]$ puis interpréter ce résultat.
 - 3. a/ Soit x < 0, montrer que l'on a : $f(x) = 1 + \frac{1}{\sqrt{1 + x^2} x}$

b/ En déduire $\lim_{x\to-\infty} f(x)$ puis interpréter ce résultat.

4. Construire \mathscr{C}_f ainsi que ses asymptotes.

Exercice 3 (5 points)

Sur le graphique ci-dessous, on a représenté dans un repère orthonormée, les courbes \mathscr{C}_f et \mathscr{C}_g représentatives de deux fonctions f et g définies respectivement sur \mathbb{R} et $\mathbb{R}\setminus\{-1\}$. On sait que : la droite d'équation y=1 est une asymptote commune aux courbes \mathscr{C}_f et \mathscr{C}_g



- 1. Donner $f\left(-\frac{1}{2}\right)$, f(2), f(0) et g(0).
- 2. Déterminer $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$, $\lim_{x\to (-1)^+} g(x)$ et $\lim_{x\to (-1)^-} g(x)$.
- 3. Etudier la continuité des fonctions f et g.
- 4. Quel est le maximum de la fonction f sur \mathbb{R} ? Préciser la valeur pour laquelle il est atteint.
- 5. Donner le nombre de solutions de l'équation : f(x) = g(x).
- 6. Etudier les variations des fonctions f et g.

Exercice 4 (5 points)

Soit f la fonction définie sur $\mathbb{R}\setminus\{-2;2\}$ par : $f(x)=\frac{2x^2-7x+6}{x^3-2x^2-4x+8}$

- 1. Calculer $\lim_{x\to -\infty} f(x)$ puis interpréter ce résultat graphiquement.
- 2. Factoriser le trinôme : $2x^2 7x + 6$
- 3. a/ Montrer que l'on a : $x^3 2x^2 4x + 8 = (x+2)(x-2)^2$ b/ Etudier la limite de f en 2.
- 4. Calcular $\lim_{x\to 0} \frac{x}{f(x) f(0)}$