EXERCICE Nº 1

Soit la fonction f définie sur IR par : $f(x) = \frac{2x}{x^2 + 1}$

- 1/ a- Montrer que pour tout réel x, on a : $2|x| \le x^2 + 1$.
 - b- En déduire que f est bornée sur IR.
 - c- Déterminer les extremums de f.
- 2/ Soient a et b deux réels de [1,+∞[.
 - a- Montrer que : $f(a) f(b) = \frac{2(a-b)(1-ab)}{(a^2+1)(b^2+1)}$
 - b- En déduire les variations de f sur [1, +∞[.

EXERCICE Nº2

Soit f une fonction définie sur IR, tel que $\forall x \in IR : f(-x) + 3f(x) = 4x^3 + 2x$.

- 1/ Montrer que pour tout réel x f est impaire.
- 2/ En déduire l'expression de la fonction f.
- 3/ Etudier alors la monotonie de f sur IR.
- 4/ Soit la fonction $g(x) = \frac{1}{\sqrt{f(x)}}$

Préciser le domaine de définition de g et étudier sa monotonie.

EXERCICE N°3

I/ Déterminer le domaine de définition de chacune des fonctions suivantes :

$$f_1(x) = \frac{x\sqrt{x+1}}{-2x^2+3x-1}$$

$$f_2(x) = \frac{\sqrt{2}x - |x|}{2x^2 + x + 3}$$

$$f_3(x) = \frac{\sqrt{5}x^4 - \pi}{\left|x^2 - 1\right| + 3}$$

$$f_4(x) = \sqrt{-2x^2 + 5x - 3}$$

$$f_5(x) = \frac{3\sqrt{x-3}}{x^2 - 9}$$

$$f_6(x) = \frac{-5x^2 + 5}{x + 1 - \sqrt{2x + 5}}$$

- II/ Soit la fonction f définie sur IR par $f(x) = -(2x+4)^2 + 3$
 - 1/ Montrer que f est majorée sur IR.
 - 2/ Montrer que f est bornée sur [-2,4].
 - 3/ Etudier les variations de f pour $x \ge -2$ puis pour $x \le -2$.
 - 4/ Déduire que f admet un extremum sur IR.
- III/ Soit la fonction f définie par $f(x) = \frac{x+1}{x^2+2x+2}$
 - 1/ Déterminer le domaine de définition de f.
 - 2/ Montrer que $\forall x \in IR$, $-1/2 \le f(x) \le 1/2$.
 - 3/ Déduire que f admet deux extremums.
- IV/ Montrer que la fonction f(x) = x(1 x) est majorée par 1/4, en déduire le maximum de f.