Exercice 1:

On considère les nombres complexes suivants : $z_1 = 1 - i \; ; \; z_2 = 1 - i \sqrt{3} \quad ; \quad z_3 = 2i$

$$z_4 = -3$$
 ; $U = \frac{z_1^5}{z_2^4}$; $V = \frac{\overline{z_2}}{z_3}$; $W = -3z_2.z_3$

- 1) Ecrire sous forme trigonométrique de $\stackrel{\circ}{z_1}$, $\stackrel{\circ}{z_2}$, $\stackrel{\circ}{z_3}$, $\stackrel{\circ}{z_4}$, $\stackrel{\circ}{U}$, $\stackrel{\circ}{V}$ et $\stackrel{\circ}{W}$
- 2) Déterminer n∈ Z dans chacun des cas suivants
 - a) $U^n \in \mathbb{R}$; b) $V^n \in i\mathbb{R}$
- 3) a- Ecrire U sous forme algébrique
 - b- En déduire $\sin \frac{\pi}{12}$ et $\cos \frac{\pi}{12}$

Exercice 2:

On considère les nombres complexes suivants : $\alpha = \frac{1-i\sqrt{3}}{2}$; $\beta = \frac{3+i\sqrt{3}}{2}$

- 1) Ecrire α et β sous forme trigonométrique
- 2) Soit $\theta \in \]0,\pi[$. On donne $z_1 = 1 \cos\theta + i\sin\theta$; $z_2 = 1 + \cos\theta + i\sin\theta$
 - a- Ecrire sous forme trigonométrique $\boldsymbol{z}_1 \quad \text{et} \quad \boldsymbol{z}_2$
 - b-Déterminer θ pour que l'on ait $z_1 = \alpha$ et $z_2 = \beta$
- 3) Le plan étant rapporté à un repère orthonormé $\left(0, \overrightarrow{U}, \overrightarrow{V}\right)$ on considère $M_1(z_1)$ et A(1) Déterminer et construire l'ensemble des points $M_1(z_1)$ lorsque θ décrit $]0,\pi[$.

Exercice 3:

Le plan étant rapporté à un repère orthonormé $(0, \vec{U}, \vec{V})$ on considère les points :

$$A(z_0 = 1 + i) \; ; \; M_1(z_1 = (1 + i)\cos\theta) \; ; M_2(z_2 = (1 - i)\cos\theta) \quad \text{avec} \; \theta \in \left]0, \frac{\pi}{2}\right[$$

- 1) Ecrire sous forme trigonométrique z_0 ; z_1 et z_2
- 2) Montrer que A , O et M₁ sont alignés
- 3) Déterminer et construire l'ensemble des points $M_1(z_1)$ lorsque θ décrit $\left[0,\frac{\pi}{2}\right]$.
- 4) On pose $Z = \frac{z_2}{z_1}$
- a) Ecrire sous forme trigonométrique Z
- b) Montrer $(\overrightarrow{0M_1}, \overrightarrow{0M_2}) \equiv \arg(z)[2\pi]$
- c) En déduire la nature du triangle OM₁ M₂
- 5) a)Déterminer l'affixe du point M_3 tel que $OM_1M_3M_2$ soit un carré.
 - b) Calculer l'aire du carré $\text{OM}_1\text{M}_3\text{M}_2$ en fonction de θ
- c)Déterminer θ pour que cette aire soit égale $\frac{1}{2}$

Exercice 4:

Soit u_n une suite définie sur \mathbb{N} par : $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{3u_n + 2}{u_n + 2} \end{cases}$

1) Montrez que \forall $n \in \mathbb{N}$; $0 \le u_n < 2$.

2) a/ Montrez que u_n est une suite croissante.

b/ En déduire que u_n est convergente puis calculer sa limite.

3) Soit
$$v_n$$
 $n \in \mathbb{N}$ définie par : $v_n = \frac{u_n - 2}{u_n + 1}$

a/Montrez que $v_{_{n}}$ est une suite géométrique ;

calculer sa raison et son premier terme.

b/ Exprimer v_n puis u_n en fonction de n.

c/ Retrouver alors $\lim_{n\to\infty} u_n$

3) a/Montrer que
$$\left|U_{n+1}-2\right| \le \frac{1}{2}\left|U_{n}-2\right|$$
 pour tout $n \in \square$

b/En déduire que $\left|U_{n}-2\right| \le 2.\left(\frac{1}{2}\right)^{n}$ pour tout $n \in \square$

c/Retrouver alors $\lim_{n \to +\infty} U_n$

Exercice 5:

On considère la suite u_n $n \in \mathbb{N}$ définie par

$$\begin{cases} u_0 = 5 \\ u_{n+1} = \sqrt{12 + u_n} \end{cases}$$

1) Montrez que \forall $n \in \mathbb{N}$; $u_n \ge 4$

2) a/ Montrez que la suite u_n est décroissante.

b/ En déduire que u_n est convergente puis calculer sa limite.

3)a/ Montrez que pour tout n $\in \mathbb{N}$, $0 \le (u_{n+1} - 4) \le \frac{1}{8}(u_n - 4)$

b/Montrez que pour tout $n \in \mathbb{N}$, $0 \le u_n - 4 \le (\frac{1}{8})^n$

c/En déduire que u_n est convergente puis calculer sa limite.

Exercice 6:

Soit (u)la suite définie sur N par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{\sqrt{2+(u_n)^2}} \end{cases}$

1) Montrez que $\forall n \in \mathbb{N}$ on a $0 \le u_n \le 1$

2) Montrez que u est décroissante. En déduire que u est convergente puis calculer sa limite.

3)Soit
$$V_n = \frac{u_n^2}{1 + u_n^2}$$

a/Montrez que \boldsymbol{V} est une suite géométrique ; calculer \boldsymbol{V}_n en fonction de \boldsymbol{n}

b/Montrez que $\forall \ n \in \mathbb{N} \quad u_n = \frac{1}{\sqrt{2^{n+1}-1}} \ ; \ retrouver \ \lim_{n \to +\infty} u_n$