Mr SOUID

3.MATH

EXERCICE Nº1

Soit ABCD un carré de coté 6 cm et I et J deux points tel que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = \frac{2}{3} \overrightarrow{AD}$

- (DI) et (JC) se coupent en K
- $1/Montrer que (I D) \perp (J C)$
- 2/a) Montrer que $\overrightarrow{DJ}.\overrightarrow{DA} = \overrightarrow{DI}.\overrightarrow{DJ}$
 - a) Montrer que $\overrightarrow{DK}.\overrightarrow{DI} = \overrightarrow{DJ}.\overrightarrow{DI}$
 - b) En déduire que $DK \times DI = \frac{1}{3}DA^2$
- 3/ Calculer alors DK
- 4/ Soit H le projeté orthogonale de A sur (DI). Calculer DH et HK.
- 5/ En déduire une méthode pour construire un carré de coté $\frac{6}{\sqrt{5}}$

EXERCICE N°2

1/ Déterminer les ensembles suivants :

$$E = \left\{ M \in P / \overrightarrow{MA}. \overrightarrow{MB} = 12 \right\}$$
 ; $F = \left\{ M \in P / 2MA^2 - 3MB^2 = 1 \right\}$

$$G = \{M \in P / MA^2 - MB^2 = -3\}$$
 ; $H = \{M \in P / \frac{MA}{MB} = 4\}$

2/ Soit $(0; \vec{i}; \vec{j})$ un R.O.N.d du plan . On donne les points A(2,4) et B(3,1) déterminer

$$L = \{M \in P / MA^2 + MB^2 = 2\}$$

$$K = \left\{ M \in P / \overrightarrow{MA}.\overrightarrow{MB} = -5 \right\}$$

EXERCICE N°3

Soit ABC un triangle tel que AB = 3 ; AC = 5 et BC = $\sqrt{10}$

- 1/a) Montrer que $AB^2 = AC^2 + BC^2 2\overrightarrow{CA}.\overrightarrow{CB}$
 - b) Calculer alors $\cos(\hat{C})$
- $2/ \operatorname{soit} A' = B*C$
 - c) Montrer que $\overrightarrow{AB}.\overrightarrow{AC} = AA^{2} \frac{BC^{2}}{A}$
 - d) Calculer alors AA'
- 3/ Soit G le centre de gravité du triangle ABC
 - a) Montrer que $\forall M \in P : MA^2 + MB^2 + MC^2 = 3MG^2 + GA^2 + GB^2 + GC^2$
 - b) Calculer GA; GB et GC.
 - c) Discuter suivant α la nature de l'ensemble

$$E_{\alpha} = \left\{ M \in P / MA^2 + MB^2 + MC^2 = \alpha ; \alpha \in IR \right\}$$

- d) Etudier les cas $\alpha = 25$ puis $\alpha = 1$
- 5/ Soit $\left(O;\overrightarrow{i};\overrightarrow{j}\right)$ un R.O.N.d du plan . On donne les points A(1 ;1) ; B(4 ;1) et C(5 ;4)
 - a) Calculer AB, AC et BC
 - b) Trouver les coordonnées du point G.

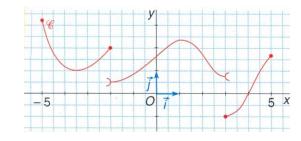
- c) Déterminer l'ensemble E₁
- d) Déterminer l'ensemble $F = \{M(x, y) \in P / \overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MB}.\overrightarrow{MC} + \overrightarrow{MC}.\overrightarrow{MA} = 1\}$

EXERCICE Nº4: Vrai – Faux justifier la réponse :

On a tracé la courbe représentative d'une fonction définie sur l'intervalle [-5; 5].

Par lecture graphique, dire si les propositions suivantes sont vraies ou fausses ?

- 1) La fonction f est discontinue en 3.
- 2) La fonction f est continue en -1.
- 3) La fonction f est continue sur l'intervalle [-3; 3].
- 4) La fonction f est continue sur l'intervalle]-2; 2]
- 5) La fonction f est continue sur l'intervalle [-5 ; 2].



EXERCICE N°5

Montrer que f est continue sur son domaine de définition dans chacun des cas suivants:

1)
$$f(x) = -3x^5 + 2x^3 - x^2$$

2)
$$f(x) = \sqrt{x^2 - 3x + 2}$$

1)
$$f(x) = -3x^5 + 2x^3 - x^2$$
 2) $f(x) = \sqrt{x^2 - 3x + 2}$ 3) $f(x) = \frac{|x+1|}{-x^2 + 3x + 4}$

4)
$$f(x) = \sqrt{x^4 + 2x^2 + 3}$$

4)
$$f(x) = \sqrt{x^4 + 2x^2 + 3}$$
 5) $f(x) = 3x^2 + 4x - \sqrt{3 + x^2}$ 6) $f(x) = |2x^2 - 3x + 4|$

6)
$$f(x) = |2x^2 - 3x + 4|$$

EXERCICE N°6

Soit f la fonction définie sur IR par $f(x) = \begin{cases} x-1 & \text{si} & x \le 0 \\ 2x-4 & \text{si} & 0 < x < 3 \\ \sqrt{x+1} & \text{si} & x \ge 3 \end{cases}$

- 1) Tracer ζ la courbe de f dans un repère orthonormé.
- 2) a) Montrer que f est continue sur chacun des intervalles]- ∞ , 0];] 0, 3[et [3, + ∞ [
 - b) Justifier graphiquement la continuité de f en 3; f est-elle continue en zéro.

EXERCICE N°7

Soit la fonction f définie sur [0;1] par $f(x)=x-\sqrt{x}$

- 1) Montrer que f est majorée par 1.
- 2) Montrer que f admet un minimum en 0.
- 3) Déduire que f est bornée sur [0;1].
- 4) Montrer que f est continue sur $[0 + \infty]$