Exercice 1:

$$soit \ la \ fonction \ \ f(x) = \begin{cases} \frac{\sqrt{x+2}-2}{x^2+x-6} & si \quad x>2 \\ x^2-6 & si \quad -2 < x \leq 2 \\ \sqrt{x^2+2x}+x & si \quad x \leq -2 \end{cases}$$

- 1)Déterminer $\lim_{\substack{2^+\\-\infty}} f$, $\lim_{\substack{+\infty\\-\infty}} f$ et $\lim_{\substack{-\infty\\-\infty}} f$
- 2) Etudier la dérivabilité de f en 2 et en (-2)
- d) Calculer f'(x) pour tout $x \in \mathbb{R} \setminus \{2, -2\}$

Exercice 2:

Soit la fonction f_m définie par $f_m(x) = \frac{x^2 - mx}{x+1}$ où m est un paramètre réel.

- 1) Déterminer les valeurs de m pour lesquelles f_m admet un maximum relatif et un minimum relatif. Dans la suite de l'exercice on pend m=1.
- 2) Etudier les variations de f et dresser son tableau de variation.(f désigne la fonction f1)
- 3) Montrer que C_f admet une asymptote oblique et une asymptote verticale.

Exercice 3:

Le plan est rapporté à un repère orthonormé R (0, \dot{i} , \dot{j}). Soit ϕ la fonction numérique

a variable réelle définie sur
$$\mathbb{R}$$
 par : $\varphi(x) = \frac{3x^2 + ax + b}{x^2 + 1}$.

1) déterminer a et b pour que la courbe représentative de φ passe par le point I(0,3) $\varphi'(0)=4$

2)Soit f:
$$\mathbb{R} \longrightarrow \mathbb{R}$$
; $x \longrightarrow \frac{3x^2 + 4x + 3}{x^2 + 1}$

a) Montrer que pour tout x de \mathbb{R} : $f(x)=\alpha+\frac{\beta x}{x^2+1}$, α,β sont des réels que l'on détermnera.

En déduire que Cf admet la droite y=1 comme asymptote horizontale ende - ∞ et + ∞ b) Etudier les variations de f .

3) soit
$$g(x) = \begin{cases} \frac{3x^2 + 4x + 3}{x^2 + 1} & \text{si } x \le 0\\ \frac{\sqrt{x^2 + 1} - 1}{x} + m & \text{si } x > 0 \end{cases}$$

a)Déterminer m pour que g soit continue en 0

Pour la suite On prend m=3

- b)Calculer $\lim_{+\infty} g$
- c)Etudier la dérivabilité de g en 0
- d) Calculer g'(x) pour tout $x \in \mathbb{R} \setminus \{0\}$. Dresser le tableau de variation de g