Exercice n°1:

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte. Cocher la réponse exacte :

- 1) Soient \vec{u} , \vec{v} et \vec{w} 3 vecteurs non nuls du plan tels que : \vec{u} . \vec{v} = \vec{u} . \vec{w} , alors on a nécessairement : a) $\vec{v} = \vec{w}$; b) $\vec{u} \perp \vec{v}$ et $\vec{u} \perp \vec{w}$; c) $\vec{u} \perp (\vec{v} \vec{w})$

3Math

- 2) Soit f la fonction définie par $f(x) = \frac{2x^2 1}{1 |x|}$, le domaine de continuité de f est :
- b) $IR \setminus \{-1\}$
- ; c) $IR \setminus \{1;-1\}$.
- 3) La f la fonction définie par $f(x) = \frac{E(x)}{x-1}$ est continue sur :

b) $IR \setminus \{1\}$

- a) IR ; b) $IR \setminus \{1\}$; c) $IR \setminus Z$. 4) $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$, une mesure de (\vec{u}, \vec{v}) est α , alors une mesure de $(-\vec{u}, \vec{v})$ est : a) $-\alpha$; b) $\alpha + \pi$; c) α .
- b) $\alpha + \pi$

- 5) La fonction $x \mapsto E(2x)$ est :
- a) continue en $\frac{1}{2}$; b) continue à gauche en $\frac{1}{2}$; c) continue à droite en $\frac{1}{2}$

Exercice $n^{\circ}2$:

Soit la fonction f définie sur $\left[-\frac{1}{4}; +\infty\right[par \begin{cases} f(x) = \frac{\sqrt{1+4x-1}}{2x} & si \ x \neq 0 \\ f(0) = 1 \end{cases}$

On désigne par (C)sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) du plan.

- 1) Montrer que f est continue en 0.
- 2) a) Montrer que $\forall x \in \left| -\frac{1}{4}, +\infty \right|$, $f(x) = \frac{2}{1 + \sqrt{1 + 4x}}$.
 - b) En déduire que f est continue sur $\left| -\frac{1}{4}; +\infty \right|$.
- 3) a) Montrer que $f\left(-\frac{1}{4}\right)$ est un maximum de f sur $\left[-\frac{1}{4};+\infty\right]$.
 - b) Montrer que f est bornée sur $\left| -\frac{1}{4}; +\infty \right|$.
- 4) Montrer que l'équation f(x) x + 1 = 0 admet une solution dans l'intervalle [1;2].
- 5) a) Montrer que f est décroissante sur $\left| -\frac{1}{4}; +\infty \right|$.
 - b) Déterminer l'image par f de l'intervalle 0;2 |.

Exercice n°3:

On donne la fonction f définie sur $]-\infty;-3[par:f(x)] = \begin{cases} 3|x-1|-|x+2|+4x-3 & si & x<1\\ E(x)-2 & si & 1 \le x < 3 \end{cases}$

- 1) Montrer que f est une fonction affine par intervalle.
- 2) Tracer (C) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- 3) Résoudre graphiquement l'équation f(x) = -2 puis les inéquations f(x) > 0 et -2 < f(x) < 0.
- 4) f est-elle continue en chacun des réels 1 et 2 ? justifier votre réponse.

Exercice n°4:

On considère un triangle équilatéral ABC tel que AB=a où a>0. soit le point tel que $\overrightarrow{AI} = 2\overrightarrow{CB}$.

- 1) Calculer $\overrightarrow{AI}.\overrightarrow{AB}$.
- 2) Calculer $\overrightarrow{BI}.\overrightarrow{BA}$. En déduire la nature du triangle ABI.
- 3) Montrer que $CI = a\sqrt{7}$. Déterminer alors $\cos(C\hat{I}B)$.
- 4) Soit $k \in IR$. On note (E_k) l'ensemble des points M tel que : $MA^2 + 2MB^2 3MC^2 = ka^2$.
 - a) Montrer que I est le barycentre des points pondérés (A,1); (B,2) et (C,-2).
 - b) Déterminer suivant k, l'ensemble (E_k) .
 - c) On donne k = -1; vérifier que $B \in (E_{-1})$ et montrer que (E_{-1}) est un cercle tangent à (AB).

Exercice n°5:

La courbe ci-contre est la courbe représentative d'une fonction f.

- 1) Donner le sens de variation de f.
- 2) a) Donner les solutions de l'équation f(x) = 0.
 - b) Dresser le tableau de signe de f.
- 3) trouver les images par f de chacun des intervalles $[1;2[,]-\infty;-1]$ et [-1;1].
- 4) a) Déterminer f(2), $\lim_{x\to 2^+} f(x)$ et $\lim_{x\to 2^-} f(x)$.
 - b) f est-elle continue à droite en 2 ? (justifier)
 - c) f est-elle continue à gauche en 2 ? (justifier)
 - d) f est-elle continue en 2 ?