<u>Lycée Houmt Souk Jerba</u> Prof : Loukil Mohamed

<u>Devoir de Synthèse N : 1</u> Durée : 2 Heures

<u>3 Mathématique 1</u> <u>04 Décembre 2010</u>

EXERCICE N:1 (4.5 points)

Soit ABC un triangle tel que AB = 4, $AC = \sqrt{2}$ et $BAC = \frac{\pi}{4}$. On pose J le milieu de [BC].

- 1) a) Faite une figure . (Unité : 2 cm)
 - **b**) Montrer que $BC = \sqrt{10}$.
- **2)** On donne $(\Gamma) = \{ M \in P \text{ tels que} : MB \cdot MC = 4 \}$.
 - **a)** Montrer que $A \in (\Gamma)$.
 - **b**) Montrer que (Γ) est le cercle de centre J et de rayon $\sqrt{\frac{13}{2}}$.
 - c) Construire (Γ).
- **3)** On donne $\Delta = \{ M \in P \text{ tels que} : MB^2 MC^2 = 2\sqrt{65} \}$. [BC) coupe (Γ) en un point H.
 - **a)** Montrer que $H \in \Delta$.
 - **b**) Montrer que Δ est une droite tangente à (Γ) en H .

EXERCICE N: 2 (4.5 points)

Le plan est muni du repère orthonormé direct $R(O, \vec{i}, \vec{j})$.

On donne les points A (0, -2); B (1, $\sqrt{3}$) et C (-1, $\sqrt{3}$).

- **1) a)** Calculer \overrightarrow{AB} . \overrightarrow{AC} puis déduire le signe de $\cos(\overrightarrow{AB}; \overrightarrow{AC})$.
 - **b**) Calculer sin(AB;AC) puis déduire la mesure principale de l'angle orienté (AB,AC).
- **2) a)** Déterminer les coordonnées polaires de B et C .
 - **b**) Déduire la nature du triangle OBC .
- **3)** Soit D le symétrique du point C par rapport à l'axe des abscisses .
 - **a**) Trouver les coordonnées polaires de D .
 - **b**) Montrer que $(\overrightarrow{DA}, \overrightarrow{DC}) = \frac{7\pi}{12} (\pi)$.

EXERCICE N: 3 (11 points)

A) Soit la fonction f définie sur IR par :
$$\begin{cases} f(x) = \frac{x^2 + 3x}{x - 1} & \text{si } x < 0 \\ f(x) = x^2 - 3x & \text{si } 0 \le x \le 2 \\ f(x) = \sqrt{x^2 - 4} + mx & \text{si } x > 2 \end{cases}$$

- 1) Montrer que f est dérivable en 0.
- **2)** Déterminer m pour que f soit continue en 2.
- B) Dans toute la suite, on suppose que m = -1.

Dans l'annexe ci-jointe, on a représenté dans le repère orthonormé R (O, \vec{i} , \vec{j}) une partie de la courbe (Cf).

- **1) a)** Vérifier que pour tout $x \in]-\infty; 0[; f(x) = x + 4 + \frac{4}{x-1}]$.
 - **b**) Déduire que la courbe (Cf) admet au voisinage de $-\infty$ une asymptote Δ .
 - **c)** Calculer $\lim_{x \to +\infty} f(x)$. (Interpréter graphiquement le résultat obtenu).
- 2) Etudier la dérivabilité de f à droite et à gauche en 2.
- **3) a)** Donner le domaine de dérivabilité de f (Justifier votre réponse)
 - **b)** Calculer f'(x) pour chacun des intervalles]0; 2[et $]2; + \infty[$.
- **4) a)** Représenter Δ et les tangentes ou demi-tangentes aux points d'abscisses 0, $\frac{3}{2}$ et 2.
 - $m{b}$) Compléter le traçage de ($m{C}m{f}$) ainsi que ses branches infinies .
- **C)** Soit g la restriction de f à l'intervalle] ∞ ; 0 [. On désigne par **(Cg)** sa courbe dans le repère **R** .

1) Montrer que pour tout
$$x \in]-\infty; 0[; g'(x) = \frac{x^2-2x-3}{(x-1)^2}$$
.

- **2) a)** Ecrire une équation cartésienne de la tangente à **(Cg)** au point M d'abscisse a .
 - **b**) Déterminer, par son équation cartésienne, la tangente à **(Cg)** issue du point A (1,3).
- **3)** Soit h la fonction définie sur] ∞ ; 0 [par : h (x) = $g^6(x)$.
 - **a)** Justifier que h est dérivable sur] ∞ ; 0 [et calculer h'(x).
 - **b**) Déduire $\lim_{x\to -3} \frac{g^6(x)}{x+3}$

<u>Nom et Prénom</u> :

Annexe à compléter et à rendre avec la copie