Ali Zouaoui

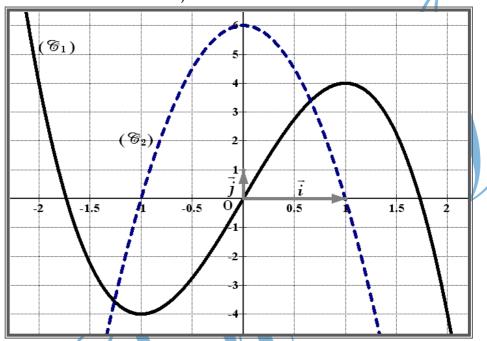
### Lycée Secondaire Devoir de synthèse N°02 Durée 03 heures

Classe: 3<sup>ème</sup> Math

#### EXERCICE $N^{\circ}$ 01 (3 pts):

Le plan est muni d'un repère orthonormé  $(0,\vec{i},\vec{j})$ .  $(\mathscr{C}_1)$  et  $(\mathscr{C}_2)$  sont les courbes représentatives, d'une fonction f dérivable sur  $\mathbb{R}$  et de sa fonction dérivée f'. Par lecture graphique:

- 1- Déterminer, parmi les courbes ( $\mathcal{O}_1$ ) et ( $\mathcal{O}_2$ ), celle qui représentent la fonction f'.
- 2- Dresser le tableau de variation de f.



## EXERCICE Nº 02 (7 pts):

Le plan  $\mathscr{D}$  est muni d'un repère orthonormé  $(0,\vec{i},\vec{j})$ 

On considère un cercle ( $\mathscr{C}$ ) de centre O et de rayon 1 et les points A(1;0) et A'(-1;0)Soit H un point du segment [AA'] distinct de A et A'. La perpendiculaire à (AA')passant par H coupe le cercle ( $\mathscr{C}$ ) en deux points M et M'.

On désigne par f la fonction définie sur [-1,1] par  $f(x) = (1-x)\sqrt{1-x^2}$ .

1- On pose  $\overline{OH} = x$  et on désigne par  $\mathcal{L}(x)$  l'aire du triangle AMM'.

Montrer que pour tout  $x \in ]-1,1[$ , on a :  $\mathcal{I}(x) = f(x)$ .

- 2- a) Etudier la dérivabilité de f en  $(-1)^+$  et en  $1^-$ .
  - b) Interpréter les résultats obtenus.
  - c) Montrer que f est dérivable sur ]-1,1[ et que  $f'(x)=\frac{(x-1)(2x+1)}{\sqrt{1-x^2}}$
  - d) Dresser le tableau de variation de f.
  - e) Montrer que si l'aire  $\mathcal{L}(x)$ est maximale alors le triangle AMM' est équilatéral.
- 3- Tracer  $(\xi_f)$ .

- 4- Soit  $(\Gamma) = \{M(x,y) \in \mathscr{D}/y^2 (1-x)^2(1-x^2) = 0\}$ .
  - a) Montrer que  $(\Gamma) = (\xi_f) \cup (\xi')$  où  $(\xi')$  est une courbe que l'on précisera.
  - b) Tracer  $(\Gamma)$  dans le même repère que  $(\xi_f)$ .

#### EXERCICE $N^{\circ}$ 03 ( 5 pts):

**A-** Dans le plan complexe rapporté à un repère orthonormé direct  $(0, \vec{u}, \vec{v})$ , on considère le cercle ( $\mathscr{C}$ ) de centre 0 et de rayon 2. Soit A un point de ( $\mathscr{C}$ ) tel que  $(\overrightarrow{u}, \overrightarrow{OA}) \equiv \frac{\pi}{3}[2\pi]$ .

- 1- Déterminer l'écriture algébrique de  $z_{\scriptscriptstyle A}$ .
- 2- Soient  $B = S_{(o,\bar{u})}(A)$  et  $C = S_{(o,\bar{v})}(A)$ .

Déterminer l'écriture trigonométrique de  $z_{\scriptscriptstyle B}$  et  $z_{\scriptscriptstyle C}$  .

3- Soit 
$$z_D = \frac{z_A \times z_B}{z_C}$$

- a) Déterminer l'écriture trigonométrique de  $z_n$ .
- b) Montrer que ABDC est un rectangle.

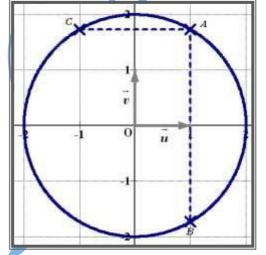
**B** - Soit 
$$z = 1 - \tan^2(\theta) + 2i\tan(\theta)$$
;  $\theta \in \left[-\frac{\pi}{4}, 0\right]$ 



a) 
$$R\acute{e}(z) > 0$$

b) 
$$|z| = 1 + \tan^2(\theta)$$

c) 
$$\arg(z) \equiv \theta[2\pi]$$



# **EXERCICE** No 04 (5 pts):

Soit ABC un triangle isocèle tel que  $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2}[2\pi]$ . Soient  $D = S_B(C)$  et R la rotation d'angle  $\frac{\pi}{2}$  et tel que R(D) = C.

- 1- Déterminer et construire le centre  $\Omega$  de R.
- 2- a) Montrer que  $A = \Omega * C$ .
  - b) En déduire  $R^{-1}(A)$ .
  - c) Construire  $R^{-1}(A)$ .

Bon Travail .....