LYCEE.O.CHATTI M'SAKEN	DEVOIR DE SYNTHESE N :2	BEN ABDELJELIL
2/2/20010	MATHEMATIQUE	3 M ₂
		_

Exercice: 1

Pour chaque question une seule réponse est exacte

Indiquer le numéro de la question et la lettre correspondant à la réponse choisie

1) l'écriture irréductible de $\frac{9369}{24984}$ est :

a) $\frac{3}{7}$

b) $\frac{7}{16}$

c) $\frac{3}{8}$

2) Soit p un entier naturel non nul.

a) $PA p^2 = 1$

- b) pA p²=p
- c) pA p²=p²

3) le reste de la division euclidienne de 4ⁿ par 3 est égal :

- a) 1
- b) 2

c) 3

4) $\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}$

a) 0

b) $\frac{1}{2}$

c) 1

EXERCICE: 2

Soit l'équation dans \mathbb{N}^2 : (E):31x-27y=5.

1)a)Montrer que le couple(7,8) est une solution de l'équation 31x-27y=1.

- b) En déduire une solution particulaire de (E).
- c)Résoudre dans N² l'équation (E).
- 2) Soit n, x et y trois entiers tels que $\begin{cases} n = 31x + 2 \\ n = 27y + 7 \end{cases}$.Montrer que (x, y) est une solution de (E).
- 3) Soit (x, y) une solution de (E), on pose $d=x \lambda y$.
 - a)Montrer que d=1 ou d=5.
 - b) On suppose que d=5; quel est le reste de la division euclidienne de x par 105

EXERCICE:3

Soit la fonction f définie par $f(x)=2\sin(2x-\frac{\pi}{3})+1$.

- 1) Déterminer une période de f.
- 2)a)Etudier les variations de f sur $[0, \pi]$.
 - b) Résoudre dans l'intervalle $[0, \pi]$ l'équation f(x)=0.
 - c) En déduire le signe de f(x) pour $x \in [0, \pi]$

- 3)a) Tracer la courbe représentative de f sur $[-\pi, 2\pi]$.
 - b) Soit la fonction g définie par g(x)=4sin(x $-\frac{\pi}{6}$)cos(x $-\frac{\pi}{6}$).

Tracer la courbe représentative de g dans le même repère.

EXERCICE:4

Soit la suite U définie sur $\mathbb N$ par : $\begin{cases} U_0 = -1 \\ U_{n+1} = \frac{4 + U_n}{5 - U_n}, \end{cases} \qquad n \in \mathbb N$

- 1) Calculer $U_1et\ U_2$.
- 2) Montrer que pour tout n $\epsilon \mathbb{N}$, on a : $-1 \leq U_n < 2$.
- 3) On considère la suite V définie sur $\mathbb N$ par : $V_n=rac{1+U_n}{2-U_n}$.
- a)Montrer que la suite V est une suite arithmétique dont on précisera le premier terme et la raison.
- b) Exprimer V_n puis U_n ,en fonction de n.
- 4) Soit la suite W définie sur $\mathbb N$ par : $\begin{cases} W_0 = 1 \\ W_{n+1} = \left(U_n + \frac{5}{n+1}\right)$. W_n $n \in \mathbb N$. On pose $X_n = \frac{W_n}{n+1}$. a)Montrer que
- $(X_n)_{n\in\mathbb{N}}$ est une suite géométrique .En déduire l'expression de W_n en fonction de n
- b) Calculer la limite de la suite W.
- 3) Soit n $\epsilon \mathbb{N}$,on pose $S_n = W_0 + W_1 + W_2 + \cdots + W_n.$

Montrer que $S_n=(n+1)X_{n+1}-\sum X_k$,puis en déduire l'expression de S_n en fonction de n.

EXERCICE:5

Dans le plan rapporté à un repère orthonormé $(0, \vec{u}, \vec{v})$, on considère les points A et B d'affixes respectives : $a = \frac{-1 + i\sqrt{3}}{2}$ et $b = \frac{\sqrt{3} + i}{2}$.

- 1) a- Ecrire sous forme trigonométrique chacun des nombres a et b.
 - b-Représenter les points A et B dans le repère.
- 2) On pose z=a+b et on désigne par M le point d'affixe z.
 - a- Montrer que OBMA est un carré
 - b- Donner la forme trigonométrique de z.
 - c- Calculer alors $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.