Lycée Ali Bourguiba Bembla

Mr: Yacoubi Hamda Mr: Chortani Atef

3ème Math 1 et2 01-03-2010

Durée: 3 h

DEVOIR DE SYNTHÈSE N°: 02

Exercice 1 (3 points)

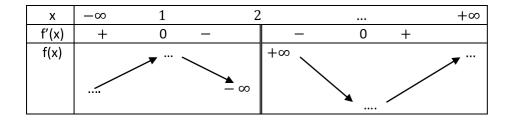
Dans chacune des questions suivantes il y a une seule réponse exacte, laquelle?

- 1) Soit x un réel de l'intervalle (p); p_{ij} tel que $\cos x = \frac{1}{3}$, alors $\sin(x+\pi) = 1$
- a) $\frac{2}{3}$

- b) $\frac{2\sqrt{2}}{3}$ c) $\frac{2\sqrt{2}}{3}$
- 2) L'ensemble des solutions de l'inéquation, $\cos x \pm \frac{1}{2}$ dans $[0,2\pi]$ est :
- a) $\frac{6p}{26}$, $\frac{5p}{3}$ $\frac{1}{4}$
- b) $\frac{6p}{23}$, $\frac{5p}{3}$ $\frac{1}{4}$ c) $\frac{6p}{24}$, $\frac{3p}{4}$ $\frac{1}{4}$
- 3) Soit f une fonction impaire dérivable sur $\mathbb R$ tel que f'(2)=1 et f(2)=3 alors une équation cartésienne de la tangente à la courbe de f au point d'abscisse -2 est :
 - a) y=x+1
- b) y=x-1
- c) y=x

Exercice 2(6points)

Soit f une fonction dont le tableau de variation est le suivant, on note φ sa courbe représentative dans le plan muni d'un repère orthonormé (O; \vec{i} ; \vec{j})



- 1)a)Donner le domaine de définition de f.
- b) Donner une équation de l'asymptote verticale φ .
- 2) On admet que $f(x) = \frac{x^2 4x + 5}{x 2}$
- a) Calculer f'(x) pour $x \neq 2$
- b) Recopier et compléter le tableau de variation de f.

3)a)Montrer que la droite Δ : y=x-2 est une asymptote oblique à φ .

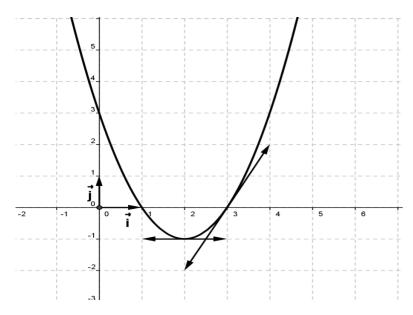
- b) Etudier la position de φ par rapport à Δ .
- 4) Montrer que $\omega(2,0)$ est un centre de symétrie de ϕ .
- 5) Tracer φ dans le repère (O; \vec{i} ; \vec{j})

6) Soit la fonction g définie sur
$$\mathbb{R}$$
 par $g(x) = \frac{x^2 - 6x + 2|x - 3| + 11}{|x - 3| + 1}$

- a) Montrer que la droite d'équation x=3 est un axe da symétrie de ϕ_g
- b) Montrer que pout tout $x \in [3, +\infty [, g(x) = f(x).$
- c) En déduire la courbe de g.

Exercice3 (4 points)

La courbe ϕ ci-dessous est la représentation graphique d'une fonction f définie sur $\mathbb R$.on admet que ϕ admet deux branches paraboliques de direction l'axe de ordonnées au voisinage de l'infini



- 1) Déterminer graphiquement
- a)f(2), f'(2), f(3) et f'(3)

$$\text{b)} \lim_{x \mathbin{\mathbb R} \, - \, \Upsilon} \, f(x) \quad , \quad \lim_{x \mathbin{\mathbb R} \, + \, \Upsilon} \, f(x) \quad , \quad \lim_{x \mathbin{\mathbb R} \, - \, \Upsilon} \, \frac{f(x)}{x} \quad \text{et} \qquad \lim_{x \mathbin{\mathbb R} \, + \, \Upsilon} \, \frac{f(x)}{x}$$

- c)Dresser le tableau de variation de f
- d) Le singe de f sur \mathbb{R}
- 2) Soit g(x) = $\sqrt{f(x)}$
- a)Déterminer le domaine de définition de g
- b) Etudier la dérivabilité de g à gauche en 1 et à droite en 3

(on pourra remarquer que $\frac{\sqrt{f(x)}}{x-3} = \frac{1}{\sqrt{f(x)}} \frac{f(x)}{(x-3)}$). Interpréter graphiquement les résultats

c) Dresser le tableau de variation de g sur $]\infty,1]\cup[3,+\infty[$.

Exercice 4(3.5 points)

Le plan P est muni d'un repère orthonormé $(0; \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixe respective

$$z_A = \sqrt{3} - i \quad z_B = 1 + i\sqrt{3} \quad z_C = \frac{-\sqrt{3}}{2} + \frac{i}{2}$$

1) Donner la forme cartésienne des nombres complexes suivants ;

$$z_A + z_B$$
 ; $\frac{z_A}{z_B}$ et $(z_A + z_B) z_C$

- 2)a)Donner la forme Trigonométriques des nombres complexes z_A , z_B et z_C
- b) Justifier que O, A et C sont alignés.
- c) Placer les points A, B et C dans le repère $(0; \overrightarrow{u}, \overrightarrow{v})$
- 3)a)Déterminer l'affixe du point D tel que OBDC soit un parallélogramme
- b) Déterminer la mesure dans [0,2 π [de l'arc orienté $\H{A}B$

Exercice 5(3.5 points)

Le plan P est muni d'un repère orthonormé $(0; \overrightarrow{u}, \overrightarrow{v})$, on considère le point A d'affixe i.

A tout point M d'affixe $z \neq 0$, on associe le point M'(z') tel que $z' = \frac{z - i}{z}$

- 1) a) Déterminer et construire l'ensemble des point M tel que |z'| = 1
- b) Déterminer l'ensemble des point M tel que z' soit réel
- c) Déterminer l'ensemble des point M tel que z' soit imaginaire
- 2)a) Montrer que si M décrit la médiatrice du segment [OA] alors M' décrit un cercle que l'on précisera

b) * Vérifier que z'
$$-1 = \frac{-i}{z}$$

* Déduire que si M décrit le cercle de centre O et de rayon 1 alors M' décrit un cercle que l'on précisera