Lycée Tahar Sfar Mahdia

Devoir de synthèse nº 2

Mathématiques

<u>Niveau</u>: 3 ème Math

Date: 04/03/2014

Prof: MEDDEB Tarek

<u>Durée</u> : 3 heures

Exercice n°1 : (6,5 pts)

A- Questions préliminaires :

Soient \vec{u} et \vec{v} deux vecteurs du plan tels que $\vec{u} \neq \vec{0}$.

On pose : $aff(\vec{u}) = x + iy$ et $aff(\vec{v}) = x' + iy'$, où x, y, x' et y' sont des réels.

- 1) Montrer que : $\frac{aff(\vec{v})}{aff(\vec{u})} = \frac{xx' + yy'}{x^2 + y^2} + i \frac{xy' x'y}{x^2 + y^2}.$
- 2) En déduire l'équivalence :

(\vec{u} et \vec{v} sont orthogonaux) si, et seulement si ($\frac{aff(\vec{v})}{aff(\vec{u})}$ est imaginaire).

- B- 1) a/ Vérifier que, pour tout nombre complexe z on a : $z^2 2z\sqrt{3} + 4 = \left(z \sqrt{3}\right)^2 + 1$.
 - b/ Résoudre dans \mathbb{C} l'équation : $z^2 2z\sqrt{3} + 4 = 0$
 - 2) Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

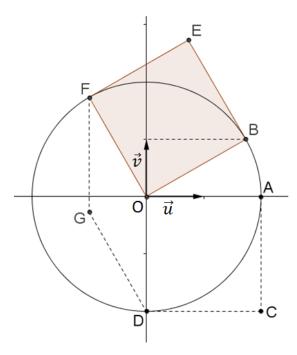
Soit \mathscr{C} le cercle de centre O et de rayon 2. A est le point d'affixe $z_A = 2$. B est le point de \mathscr{C} tel que $\operatorname{Im}(B) = 1$ et $\operatorname{Re}(B) > 0$. On construit le carré direct OBEF (voir figure).

a/ Montrer que :
$$z_B = \sqrt{3} + i$$
 et que $z_F = -1 + i\sqrt{3}$.

- b / Déterminer la forme algébrique de $z_{\scriptscriptstyle E}$, puis vérifier que $z_{\scriptscriptstyle E}$ = (1+ i) $z_{\scriptscriptstyle B}$.
- c / Ecrire z_E sous la forme trigonométrique.

En déduire les valeurs exactes de $\cos \frac{5\pi}{12}$ et

$$\sin\frac{5\pi}{12}.$$



- 3) Soient C et D les points d'affixes respectives $z_C = 2 2i$ et $z_D = -2i$. On construit le point G tel que OFGD est un parallélogramme.
 - a/ Montrer que : $z_G = i(z_B 2)$.
 - b / Montrer que : $\frac{z_E-z_G}{z_C-z_G}=i$, en déduire que le triangle CEG est rectangle et isocèle.

Exercice n°2 : (6,5 pts)

- 1) Soit u la fonction définie sur $[0; \pi]$ par : $u(x) = x \sin x + \cos x$.
 - a/ Etudier les variations de u.
 - *b*/ Montrer que l'équation : u(x) = 0 admet dans l'intervalle $\left[\frac{\pi}{2}; \pi\right]$ une solution unique α .
 - c/ Déterminer, suivant les valeurs de x, le signe de u(x) dans $[0; \pi]$.
- 2) Soit f la fonction définie sur]0; π] par : $f(x) = \frac{\cos x}{x}$.

On désigne par \mathscr{C} sa courbe représentative dans un repère orthogonal (O,\vec{i},\vec{j})

- a/ Montrer que, pour tout $x \in]0$; π , $f'(x) = -\frac{u(x)}{x^2}$.
- b/ Etablir le tableau de variations de f.
- c/ Montrer que : $f(\alpha) = -\sin \alpha$.
- 3) Soit *T* la tangente à \mathscr{C} au point d'abscisse $\frac{\pi}{2}$.
 - a/ Déterminer l'équation réduite de T.
 - $b / \text{Soit } h(x) = \cos x + \frac{2}{\pi} x^2 x, \quad x \in [0; \pi].$

Déterminer h'(x) et h''(x).

- c/ Etudier les variations de h'. Calculer $h'\left(\frac{\pi}{2}\right)$, en déduire le signe de h'(x) suivant les valeurs de x.
- d/ Etudier les variations de h, en déduire que $h(x) \ge 0$, pour tout $x \in [0; \pi]$.
- e/ Déduire, de ce qui précède, la position de \mathscr{C} par rapport à T pour $x \in [0; \pi]$.

Exercice n°3 : (3.5 pts)

Soit *f* la fonction définie par : $f(x) = \frac{\sin^3 x}{(\sin x - 1)^2}$.

On désigne par C_f sa courbe représentative dans un repère orthogonal $\left(O,\vec{i},\vec{j}\right)$.

- 1) a/ Déterminer le domaine de définition de f, noté D.
 - b/ Montrer que f est 2π -périodique.
 - c/ Montrer que la droite Δ : $x = \frac{\pi}{2}$ est un axe de symétrie de C_f .
- 2) a/ Montrer que, pour tout $x \in D$, on a : $f'(x) = \frac{\cos x \sin^2 x (\sin x 3)}{(\sin x 1)^3}$.

- b / Dresser le tableau de variations de f sur $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right[$.
- c / Tracer la représentation graphique de la restriction de f à l'intervalle $\left[\frac{-\pi}{2};\frac{7\pi}{2}\right]\cap D$ de la feuille annexe.

Exercice $n^{\circ}4$: (3.5 pts)

Une urne contient quatre boules blanches numérotées 1, 2, 3,4 et quatre boules noires numérotées 0, 1, 2, 3 et deux boules vertes numérotées 0, 1.

- 1) On tire simultanément trois boules. Déterminer le nombre de tirages donnant :
 - a/ Trois boules de même couleur.
 - b/ Au moins une boule blanche.
 - c/ Une somme paire de chiffres.
- 2) On tire successivement et sans remise cinq boules. Déterminer le nombre de tirages donnant :
 - a/ La boule portant le numéro 4.
 - b/ Exactement trois boules blanches.
 - c/ Un produit nul de chiffres.

Bonne chance

FEUILLE ANNEXE À RENDRE AVEC LA COPIE

Devoir de synthèse n \bullet 2 (04 – 03 – 2014)

Nom et prénom : Classe : 3 ème Math

