Lycée Kheniss	Devoir de synthèse N°3	<u>Prof</u> : <u>Mbarek</u> <u>Hedi</u>
A.S 2007-2008	Mathématiques Durée : 3h	3 éme Maths Le 27/05/2008

Exercice N°1

On dispose d'une urne U₁ et d'une urne U₂

L'urne U₁ contient 3 boules blanches et 4 boules rouges.

L'urne U₂ contient 4 boules blanches et 2 boules rouges.

Toutes les boules sont indiscernables au toucher.

- 1) On considère l'épreuve suivante :
 - On tire simultanément 3 boules de U₁.
 - a) Quelle est la probabilité d'obtenir une seule boule blanche?
 - **b**) Quelle est la probabilité d'obtenir au plus 2 boules blanches ?
- 2) On considère l'épreuve suivante :
 - on tire successivement sans remise 2 boules de U₂.
 - a) Quelle est la probabilité d'obtenir 2 boules blanches?
 - **b**) Quelle est la probabilité d'obtenir au moins une boule blanche?
- 3) On considère l'épreuve suivante :
 - On tire simultanément 3 boules de U₁ <u>puis</u> on tire successivement <u>sans</u> <u>remise</u> 2 boules de U₂.
 - a) Quelle est la probabilité d'obtenir 5 boules blanches ?
 - **b**) Quelle est la probabilité d'obtenir au moins une boule blanche?

EXERCICE N° 2

Le tableau suivant donne la charge maximale Y, en tonnes, q'une grue peut lever pour une longueur X, en mètres, de la flèche.

X	9	10	12	14	16	18	20	22
Y	1.4	1.25	1	0.84	0.7	0.62	0.55	0.5

- 1) Représenter dans un repère orthogonal le nuage de points associé à cette série statistique.
- 2) Calculer la moyenne, la variance et l'écart type de chacune des variables X et Y.
- 3) Calculer la covariance de X et Y. Interpréter
- 4) En utilisant la méthode de Mayer, donner une équation de la droite d'ajustement de Y en X et la tracer.
- 5) Quel est la charge maximale que peut lever la grue avec une flèche de 23 mètres ?

Exercice N°3:

Dans l'espace rapporté à un repère orthonormé R = (o, i, j, k), on considère les points : A(1, 1, 1), B(0, 1, -1) et C(-1, 0, 1) et le plan P : x - z + 3 = 0.

- 1) a) Calculer $\overrightarrow{OA} \wedge \overrightarrow{OB}$ et en déduire que les points O, A et B déterminent un plan Q
 - b) En déduire q'une équation cartésienne du plan Q est : 2x y z = 0.
- 2) a) Montrer que les plans P et Q sont sécants selon une droite Δ dont on déterminera une représentation paramétrique.
 - b) Calculer $d(C, \Delta)$
- 3) a) Ecrire une équation cartésienne de la sphère S de centre I(1,0,1) et de rayon 1
 - b) Montrer que $S \cap Q$ est un cercle dont on précisera le centre ω et le rayon r.

EXERCICE N°4:

Dans l'espace rapporté à un repère orthonormé R = (o, i, j, k) on considère les points A(1, 2, -1) et B(2, 1, 1)

- 1) Trouver une équation du plan Q passant par A et perpendiculaire à la droite (AB)
- 2) Soit P_m le plan d'équation : x + y + m 3 = 0, où m est paramètre réel.
 - a) Montrer que la droite (AB) est parallèle au plan P_m.
 - b) Pour quelle valeur de m la droite (AB) est-elle incluse dans le plan P_m?
 - c) Montrer que le plan P_m est perpendiculaire au plan Q
- 3) Soit A' et B' les projetés orthogonaux de A et B sur le plan P_m Déterminer les valeurs de m pour que ABB'A' soit un carré.
- 4) On prend m = $2\sqrt{3}$
 - a) Calculer la surface du quadrilatère ABB'A'.
 - b) Calculer la distance du point O au plan (ABB').
 - c) En déduire le volume du pyramide OABB'A'.

EXERCICE N°5

Soit la suite U définie sur IN par $\begin{cases} U_{\scriptscriptstyle 0} = 2 \\ U_{\scriptscriptstyle n+1} = 2 - \frac{1}{U_{\scriptscriptstyle n}} \end{cases}$

- 1/a) Montrer par récurrence que pour tout entier naturel n, on a : Un > 1
 - b) Montrer que la suite U est décroissante
- 2/ Soit V la suite définie sur IN par : $V_n = 3 + \frac{1}{U_n 1}$
 - a) Montrer que V est une suite arithmétique dont on précisera la raison et le premier terme
 - b) Exprimer V_n en fonction n et en déduire que $U_n = \frac{n+2}{n+1}$
 - c) Calculer $\lim_{n\to +\infty} U_n$ et la somme $S=\sum_{k=1}^{50} v_k$