EXERCICE N°1 (4pts)

Une entreprise imprime des cartes. Afin d'effectuer des contrôles en cours de production, on prélève un échantillon de 80 cartes. Pour chaque carte de l'échantillon, on détermine la Densité optique (densité à plat du noir).

On obtient les résultats suivants :

Densité	[1,50;1,54[[1,54;1,58[[1,58;1,62[[1,62;1,66[[1,66;1,70[[1,70;1,74[
Effectif n _i	2	10	26	32	8	2
Centre x _i						
ECC						

- 1) Reproduire et compléter le tableau si dessus
- 2) Calculer la médiane Me et les quartiles Q_1 et Q_3 de cette série statistique.
- 3) Dresser le diagramme en boite correspondant. Interpréter
- 4) Calculer la moyenne \bar{X} et l'écart type σ_X de la série statistique .
- 5) Déterminer le nombre de cartes dont la densité optique appartient à l'intervalle [$\bar{X} \sigma_X$; $\bar{X} + \sigma_X$]. Exprimer ce nombre en pourcentage de l'effectif total.

EXERCICE N°2(5pts)

En prévision du lancement d'un nouveau produit, une société a effectué une enquête auprès de clients éventuels pour fixer le prix de vente de ce produit. Les résultats sont donnés dans le tableau ci-dessous :

Prix x_i de	9	10	11	12	14	15	16	17
vente en D								
Nombre y_i	180	160	150	130	100	90	80	70
d'acheteurs								

1) Représenter le nuage de points

1cm sur l'axe des abscisses et 1cm pour 10 unités sur l'axe des ordonnées

- 2) Calculer \overline{X} et \overline{Y} . Représenter le point $G(\overline{X}; \overline{Y})$ dans le nuage des points
- a) Calculer les coordonnées des points G_1 et G_2 . Tracer la droite $(G_1 G_2)$
 - b) Estimer graphiquement le prix maximum pour qu'il y ait au moins 50 acheteurs potentiels
- 4) a) Montrer qu'une équation de la droite $(G_1 G_2)$ est Y = -14X + 302
 - b) En déduire:
- le nombre d'acheteur que l'on peut prévoir si le prix de vente est fixé à 13D
- le prix de vente pour que le nombre d'acheteurs potentiels soit ≥250

EXERCICE N°3(5pts)

Dans le plan menu d'un repère orthonormé (O, \vec{u}, \vec{v}) , on considère les points A, B et C d'affixes $Z_A = 2i$; $Z_B = \sqrt{3} - i$ et $Z_C = -\sqrt{3} - i$

- 1) Ecrire Z_A , Z_B et Z_C sous forme trigonométriques puis placer les points A, B et C dans le repère (O, \vec{u}, \vec{v})
- 2) Montrer que le triangle ABC est isocèle en A
- 3) Déterminer $\mathbb{Z}_{\mathbb{D}}$ l'affixe du point D pour que ABCD soit un parallélogramme.
- 4) Déterminer chacun des ensembles suivants :

$$E = \left\{ M(Z) \in P / |Z - 2i| = |Z - \sqrt{3} + i| \right\}$$
$$F = \left\{ M(Z) \in P / |iZ + 2| = 1 \right\}$$

EXERCICE N°4(6pts)

Dans l'espace rapporté à un repère orthonormé $\left(O,\vec{i},\vec{j},\vec{k}\right)$ on donne les points

$$A(1,0,2)$$
; $B(0,1,2)$ et $C(1,-2,0)$ et le plan $Q:3x-2y+z+3=0$

- 1) a) Donner les composantes des vecteurs \overrightarrow{AB} et \overrightarrow{AC}
 - b) Déduire que les points A, B et C déterminent un plan P
 - c) Déduire qu'une équation cartésienne de P est x + y z + 1 = 0
- 2) a) Montrer que P et Q sont perpendiculaires
 - b) Donner une représentation paramétrique de la droite $D = P \cap Q$
- 3) a) Déterminer les coordonnées du point H projeté orthogonale du point I(1,2,-2) sur le plan P
 - b) Vérifier que la distance du point I au plan P est égal à $2\sqrt{3}$
- 4) Soit l'ensemble $S = \{ M(x, xy, z) \in \xi / x^2 + y^2 + z^2 2x 4y + 4z 18 = 0 \}$
 - a) Montrer que S est une sphère dont on déterminera le centre et le rayon
 - b) Montrer que S et P sont sécants en un cercle dont on déterminera le centre et le rayon.