Exercice N°1 (5pts)

Une urne contient 10 boules dont x sont blanches et les autres sont rouges

1. On suppose que x = 4

a. On tire au hasard et simultanément 2 boules de l'urne .Déterminer la probabilité de chacun des évènements suivants :

A. « Avoir 2 boules de même couleur »

B. « avoir 2 boules de couleur différentes »

C. « Avoir au moins une boule blanche »

b. Déterminer la probabilité de chacun des évènements A ; B et C si :

• Le tirage de deux boules est successives sans remise.

• Le tirage de deux boules est successive et avec remis.

2. On suppose que $2 \le x \le 8$; On tire au hasard et simultanément 2 boules de l'urne

a. Déterminer la probabilité P(x) d'avoir 2 boules de mêmes couleurs.

b. Quel doit être le nombre x pour que la probabilité P(x) soit minimale.

Exercice N°2 (5pts)

On considère les deux suites réelles $(u_n)_{n\in IN}$; $(v_n)_{n\in IN}$ définies par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2} u_n + 2 \end{cases}$$

1.

a. Calculer u, et u,

b. Déduire que u : ni arithmétique ni géométrique.

2. On pose la suite $(v_n)_{n \in IN}$ définie par $v_n = u_n - 4$

a. Montrer que v est une suite géométrique.

b. Donner alors $\boldsymbol{v}_{\scriptscriptstyle n}$ en fonction de n $% \boldsymbol{v}_{\scriptscriptstyle n}$.

c. Déduire u en fonction de n.

3. Exprimer en fonction de n : S = $\sum_{k=1}^{k=n} v_K$.

4. Déduire en fonction de n $: S' = \sum_{k=1}^{k=n} u_K$.

Durée: 3h

Problème (10pts)

oit f_m la fonction définie par : $f_m(x) = \frac{-x^2 + mx + 4}{x - 1}$; $x \in \mathbb{R} - \{1\}$ où m est un paramètre réel On note ζ_m la courbe de f_m

I/

1. .

- a. Calculer $f'_{m}(x)$ pour tout $x \in \mathbb{R} \{1\}$
- b. Déterminer suivant les valeurs de m $\lim_{x \to 1} f_m(x)$
- 2. Déterminer les valeurs de m pour les quelles f_m admet deux extremums

3.

- a. Montrer que toutes les courbes ζ_m passent par un point fixe A.
- b. Déterminer m pour que la tangente à ζ_m en A ait pour coefficient directeur (-3).

II/ On suppose dans la suite que m = 1 et f = f1 et $\zeta = \zeta_1$

1

- a. Montrer que $f(x) = x + \frac{4}{x-1}$.
- b. Préciser les asymptotes à ζ .
- 2. Etudier f et tracer ζ .
- 3. Soit D_a : la droite dont une équation est : y = a x + 1 a (où a est un réel).
 - a. Déterminer les valeurs de a pour que D_a coupe ζ en deux points distinct M' et M''
 - b. Soit x' et x'' les abscisses de M' et de M''
 - c. En déduire que les tangentes à ζ en M' et M'' sont parallèles.
- 4. Soit la fonction g définie par $g(x) = |x| + \frac{4}{x-1}$ et ζ 's a courbe représentative.
 - a. Etudier les variation de g sur $-\infty,0$
 - b. Etudier la dérivabilité de g en 0 . Interpréter graphiquement le résultat.
 - c. Préciser l'asymptote à ζ ' au voisinage de $-\infty$ et construire ζ ' dans le même repère.

III/

Soit la fonction h définie par $h(x) = 4 \sin^2(x) + \frac{4}{4 \sin^2(x) - 1}$

1.

- a. Déterminer Dh le domaine de définition de h.
- b. Montrer que $\forall x \in Dh \text{ on a} : h(x) = 2 2\cos(2x) \frac{4}{2\cos(2x) 1}$

2

- a. En utilisant la périodicité et la parité de h montrer qu'il suffit d'étudier h sur $\left\lceil 0, \frac{\pi}{2} \right\rceil \cap Dh$
- b. Etudier le signe de $2\cos(2x) 1 \operatorname{sur} \left[0, \frac{\pi}{2}\right]$ puis déduire $\lim_{\frac{\pi}{2}} h(x)$
- c. Dresser le tableau de variation de h $\sup \left\lceil 0, \frac{\pi}{2} \right\rceil \cap Dh$
- d. Construire $C_{\scriptscriptstyle h.}$ sur $\left[-rac{\pi}{2},rac{\pi}{2}
 ight] \cap Dh$ dans un autre repère .

Durée: 3h

I- Montrer que ζ_a passe par un point fixe A dont on donnera les coordonnées

II- Dans cette partie on pose a = 2

1/ Vérifier que
$$\forall x \in IR - \{2\}, \ f_2(x) = 4 - x + \frac{4}{x - 2}$$

 $_{\mathrm{2/}}$ a-Etudier les variations de f_{2}

b-/ Montrer que Ω (2,2) est un centre de symétrie de ζ_2 .

c-Préciser les asymptotes de ζ_2 et tracer ζ_2 dans un repère orthonormé (o,i,j)

4/ soit $m \in IR$ et D_m la droite d'équation : y = m(x-2) + 2

- Déterminer l'ensemble des réels m pour les quels ζ_2 et D_m se coupent en deux Points distincts M' et M''.
- Montrer que Ω est le milieu [M'M''].

5/ On pose
$$g(x) = \frac{1}{\sin x - 2}$$

- Montrer que g est définie sur IR
- Montrer que g est périodique de période 2 Π
- c- Etudier g et tracer Cg sur $\left[0,2\pi\right]$