

Exercice1

Soient les déclarations Pascaliennes suivantes :

Const C1=10;

C2=0.10E-4;

Var R: real;

M, N : integer;

Ch: string;

<u>Dire</u> si les affectations suivantes sont <u>valables</u> en mettant (X) ou <u>non</u> (avec justification):

Expression	valable	Non: justification
R := (M mod N) div length (ch)		
M := (C1 + N) * 2		
C1 := M + N		
N := pos ('R' , ch) - round (R)		
Ch:= copy ('ABCD', C1, R)		
R := C2 / 0.10E-4		

Exercice2

Soit un tableau <u>T de 4 réels</u> et soit l'algorithme suivant :

0/	Début	algorithme	EXE4

1/ T[1] ← 0

2/ T[2] ← 10

 $3/T[3] \leftarrow 4$

 $4/T[4] \leftarrow 4$

 $5/X \leftarrow T[1]$

6/ T[1] ← T[4]

7/ $T[4] \leftarrow X$

8/ $X \leftarrow T[2]$

9/ T[2] ← T[3]

10/ T[3] \leftarrow X

11/ FIN algorithme EXE4

On vous dema	nde de :
--------------	----------

- 1. Traduire cet algorithme en Turbo Pascal.
- 2. Noter ci-dessous les différente valeurs des élément du tableau T et de la variable X:

	1	2	3	4	X
Т					

3. Que fait cet algorithme?

Exercice3

Ecrire une instruction algorithmique permettant de :

- 1. Supprimer d'une chaîne de caractères CH le caractère A' (on suppose que ce dernier existe une seule fois dans CH)
- 2. Ajouter à la fin d'une chaîne de caractères 'S'
- Afficher sur écran le caractère du milieu d'une chaîne de caractères (sachant que le nombre de caractères est impair)

Exercice4

Evaluez les expressions suivantes en notant le type de chaque résultat

Expression	Résultat	Type
'ABC + XY' + '123 - 3'		
ABS(SQRT(3) - SQRT(2)) > 5		
Pos ('(', '4(ème)sc2') + Pos('2', '4(éme)sc2')		
Round(3.8) + Round(4) div 2		

Evencial	_

Ecrire une instruction permettant de supprimer le dernier caractère d'une chaîne CH.
Ecrire une instruction permettant d'afficher sur écran le caractère dont le code ASCII est 42
Ecrire une instruction permettant d'affecter à (y) le chiffre des unités d'un réel (x) Exemple: x=125.64 → y=5