Lycée S.C.J Gafsa A /5 2017-2018

DEVOIR DE CONTROLE \mathcal{N}_2

Prof: Mr , Slimen . LNiveau $:3^{\grave{e}me}T_1$

Exercice N1

(3pts)

ABC est un triangle tel que AB=3, AC=4 et $\widehat{BAC}=\frac{2\pi}{3}$. H est le projeté orthogonale de C sur la droite (AB)

 $1/\text{Calculer } \overrightarrow{AB}.\overrightarrow{AC}.$ En déduire AH

2/Calculer l'aire du triangle ABC

Exercice N2

(6pts)

On considère la fonction définie sur $\mathbb{R} f(x) = \cos 2x - \sin 2x + 1$

1 /Calculer $f(\frac{41\pi}{8})$

2/a-Montrer que pour tout réel x on'a : $\cos(2x) - \sin(2x) = \sqrt{2}\cos(2x + \frac{\pi}{4})$

b-Résoudre Dans [0; $2\pi[f(x) = 0$

3/Soit la fonction g définie sur $[0; 2\pi[$ par $g(x) = \frac{2\cos(2x)}{f(x)}$

Déterminer le domaine de définition de g

4/ a- Montrer que pour tout réel $x : f(x) = 2 \cos x (\cos x - \sin x)$

b- Montrer que pour tout réel $x \in D_g$ on a $g(x) = 1 + \tan x$. (utiliser $\cos(2x) = (\cos x)^2 - (\sin x)^2$)

c-En déduire la valeur de $\tan \frac{\pi}{8}$

Exercice N3

<u>(5pts)</u>

Soit la fonction définie par $f(x) = \begin{cases} 2 - x^2 & si & x < 1 \\ \frac{1}{\sqrt{x}} & si & x \ge 1 \end{cases}$

1/Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.

 $2/\mathrm{Etudier}$ la continuité de f en 1. En déduire le domaine de continuité de f .

3/a-Etudier la dérivabilité de f à droite et à gauche en 1.

b-Donner les équations des demi-tangentes de f au point d'abscisse 1.

Exercice N4

(6pts)

Dans la graphe ci-contre on a tracer la courbe représentative graphique d'une fonction f définie sur \mathbb{R} dans un repère orthonormé $(0,\vec{\imath},\vec{\jmath}).T$ est la tangente à ξf au point A(4,1)

-La courbe ξf admet exactement deux tangentes horizontale .

1/Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$

2/Déterminer f'(0), f'(3), $f'_d(1)$ et $\lim_{x\to 1^-} \frac{f(x)+2}{x-1}$

4/Dresser le tableau de variation de f.

5/a-Déterminer f'(4) et f(4), puis donner l'équation de la tangente T à ξf .

b-Déterminer une valeur approché de f(4,001)à 10^{-2} prés

