Lycée Remada Tataouine Prof : M^R Hamdi zantour

Année Scolaire : 2017 - 2018 Classe : $3^{\text{ème}}$ Technique

Date : 23/05/2018 Durée : 3 heures

Corrigé du devoir de synthèse N°2

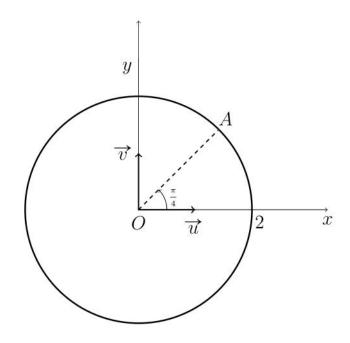
MATHÉMATIQUES

Exercice 1 (5 points)

1. a)
$$|z_A| = |z_B| = 2$$
, $arg(z_A) = \frac{\pi}{4}$ et $arg(z_B) = \frac{5\pi}{6}$

b) On a :
$$OA = OB = 2 \Longrightarrow A, B \in \mathscr{C}_{(O,2)}$$

c)



2.
$$\frac{z_B}{z_A} = \frac{i - \sqrt{3}}{\sqrt{2} + \sqrt{2}i} = \frac{\sqrt{2}i + \sqrt{2} - \sqrt{6} + \sqrt{6}i}{4} = \frac{\sqrt{2} - \sqrt{6} + i(\sqrt{2} + \sqrt{6})}{4}$$

3. a)
$$z_A = 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \left[2; \frac{\pi}{4}\right]$$

$$z_B = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) = \left[2; \frac{5\pi}{6}\right]$$

b)
$$\frac{z_B}{z_A} = \frac{\left[2; \frac{5\pi}{6}\right]}{\left[2; \frac{\pi}{4}\right]} = \left[1; \frac{7\pi}{12}\right]$$

c) D'une part :
$$\frac{z_B}{z_A} = \frac{\left[2; \frac{5\pi}{6}\right]}{\left[2; \frac{\pi}{4}\right]} = \left[1; \frac{7\pi}{12}\right] = \cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}$$

D'autre part :
$$\frac{z_B}{z_A} = \frac{\sqrt{2} - \sqrt{6} + i\left(\sqrt{2} + \sqrt{6}\right)}{4}$$

Par identification, on en déduit que :
$$\cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$$
 et $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$

Exercice 2 (3 points)

11 jetons
$$\begin{cases} 3N \\ 6R \\ 2V \end{cases}$$

- 1. Le nombre de tirages possibles est le nombre d'arrangements de 3 jetons parmi 11 jetons, donc le nombre de tirages possibles est : $A_{11}^3 = 990$.
- 2. Le nombre de tirages contenant 3 jetons rouges est : $A_6^3 = 120$.
- 3. Le nombre de tirages contenant 3 jetons qui sont de la même couleur est : $A_3^3 + A_6^3 = 126.$
- 4. Le nombre de tirages contenant un tirage tricolore est : $6\times A_3^1\times A_6^1\times A_2^1=6\times 36=216.$
- 5. Le nombre de tirages contenant au moins un jeton rouge est :

$$3 \times A_6^1 \times A_5^2 + 3 \times A_6^2 \times A_5^1 + A_6^3 = 930.$$

Autrement : aucun jeton rouge $A_{11}^3 - A_5^3 = 990 - 60 = 930$.

Exercice 3 (6 points)

- 1. En utilisant les chiffres 9, 6, 3 et 8, on peut former : $4 \times 3 \times 2 \times 1 = 24$ nombres ayant 4 chiffres distincts.
- 2. Un tiercé, c'est 3 personnes.

Pour la première personne, il y a 20 choix.

Pour la deuxième personne, il y a 19 choix.

Pour la troisième personne, il y a 18 choix.

Le nombre de tiercés est donc : $A_{20}^3 = 6840$.

- 3. a) $A_{26}^3 = 15600$.
 - b) $26 \times 26 \times 26 = 26^3 = 17576$.
- 4. Il y a : $2^{10} = 1024$ façons différentes de répondre à cet examen.
- 5. Le nombre de résultats possibles est : $2^3 \times 6^2 = 8 \times 36 = 288$.

- 6. On a : 6 voyelles et 20 consonnes. On peut former : $20 \times 6 = 120$ mots.
- 7. On note ${\mathscr A}$ l'ensemble des nombres entiers positifs composés de 3 chiffres.

$$\#\mathscr{A} = 9 \times 10 \times 10 = 900.$$

Exercice 4 (3 points)

1.
$$|z_B| = |z_C| = 4$$
, On a : $OB = OC = 4 \Longrightarrow B, C \in \mathscr{C}_{(O,4)}$

2. a) On a :
$$z_A = \frac{z_B - z_C}{2} = 2i\sqrt{3}$$
.

$$|z_A - z_B| = 2 \Rightarrow AB = 2.$$

$$|z_A - z_C| = \sqrt{52} \Rightarrow AC = \sqrt{52}.$$

$$|z_B - z_C| = 4\sqrt{3} \Rightarrow BC = 4\sqrt{3}.$$

b) On a : $AC^2 = AB^2 + BC^2$ car : 52 = 4 + 48, donc d'après la réciproque du théorème de Pythagore le triangle ABC est rectangle en B.

Exercice 5

(3 points)

1.
$$U_1 = 1$$
, $U_2 = \sqrt{2}$ et $U_3 = \sqrt{3}$.

On a :
$$\frac{U_2}{U_1} = \sqrt{2}$$
 et $\frac{U_3}{U_2} = \sqrt{\frac{3}{2}}$

On a :
$$\sqrt{2} \neq \sqrt{\frac{3}{2}} \Rightarrow (U_n)$$
 n'est pas une suite géométrique.

2. a) Montrons cette propriété par récurrence.

Pour n = 1, on a : $U_1 = 1 \neq 0$, supposons que l'on a : $\forall n \in \mathbb{N}^*$, $U_n \neq 0$ et montrons que : $U_{n+1} \neq 0$.

On a :
$$U_n \neq 0 \Rightarrow U_n^2 \neq 0 \Rightarrow U_n^2 > 0 \Rightarrow U_{n+1} > 1 \Rightarrow U_{n+1} \neq 0$$
.

Donc, par récurrence, on a : $\forall n \in \mathbb{N}^*, U_n \neq 0$.

b) Pour tout
$$n \ge 1$$
, on a : $\frac{U_{n+1}}{U_n} = \sqrt{\frac{1 + U_n^2}{U_n^2}} = \sqrt{\frac{1}{U_n^2} + 1}$

c) Pour tout
$$n \ge 1$$
, on a : $1 + \frac{1}{U_n^2} > 1$ car $U_n^2 > 0$.

Donc $\frac{U_{n+1}}{U_n} = \sqrt{\frac{1}{U_n^2} + 1} > 1$, or les termes de la suite (U_n) sont strictement positifs $\Rightarrow (U_n)$ est strictement croissante sur \mathbb{N}^* .