Série: fonction trigonométrique

3^{ème} Sci exp

Exercice Nº1

Calculer les limites suivantes:

$$\lim_{x \to 0} \frac{\sin 8x}{5x} \; ; \; \lim_{x \to 0} \frac{tg3x}{x} \; ; \; \lim_{x \to \frac{\pi}{6}} \frac{\cos x - \sqrt{3}\sin x}{x - \frac{\pi}{6}}$$

EXERCICE N°2

Soit la fonction $f: x \to \cos 2x - x$ définie sur $[0; 2\pi]$

- 1- Etudier les variations de f.
- 2- Soit C la courbe de f dans un repère orthonormé.
 - a) Tracer les demi-tangentes à la courbe C aux points A et B d'abscisses respectives 0 et π .
- b) Montrer que la courbe C admet un point d'inflexion I que l'on déterminera ; tracer la tangente à C au point I .
 - c) Tracer C
- 3- Résoudre graphiquement dans [0; π] l'équation cos2x = x

EXERCICE N°3

Soit la fonction f définie sur IR par $f(x)=\sin^2 x-\sin x+2$

- 1- Etudier la périodicité de f
- 2- a) Montrer que Pour tout réel x on a f(π -x) = 2 + f(x)
 - b) En déduire un axe de symétrie de Cf
- 3- Etudier et représenter f sur $[-\pi, \pi]$

EXERCICE N°4

Soit la fonction f définie sur IR par $f(x)=2\cos^2 x + \sqrt{3} \sin 2x - 1$

- 1- Déterminer deux réels a et φ tels que pour tout réel x on a $f(x)=a\cos(2x-\varphi)$
- 2- Etudier la fonction f
- 3- Tracer la courbe C_f de f dans un repère orthonormé.

Exercice n°5

I – Soit f la fonction définie sur IR\{2} par $f(x) = \frac{x^2 - 2}{x - 2}$ et ζf sa courbe représentative

dans un repère orthonormé (O, i, j)

1- Calculer lim f(x) et lim f(x), interpréter graphiquement les résultats trouvés $x \rightarrow 2^+$ $x \rightarrow 2^-$

A*S2006-2007

Série: fonction trigonométrique

3^{ème} Sci exp

- 2- a) Montrer que la droite Δ d'équation y=x+2 est une asymptote pour la courbe ζf
 - b) Etudier la position relative de ζf par rapport à Δ
- 3- a) Montrer que pour tout $x \in IR \setminus \{2\}$; $f'(x) = \frac{x^2 4x + 2}{(x-2)^2}$
 - b) Dresser le tableau de variation de f
- 4- Tracer la courbe ζf
- II- Soit g la fonction définie sur IR par $g(x)=\cos 2x+\sqrt{3}\sin 2x$, ζg sa courbe représentative dans un repère orthonormé (w,u,v)
- 1- Ecrire g(x) sous la forme $rcos(2x-\phi)$ où r et ϕ des réels a déterminé
- 2- Calculer $g(\frac{\pi}{3})$ et $g(-\frac{\pi}{3})$. En déduire que g est une fonction ni paire ni impaire
- 3- Soit $x \in IR$, $k \in \mathbb{Z}$, calculer $g(x+k\pi)$. En déduire qu'il suffit d'étudier g sur $D_E=[0,\pi]$
- 4- Dresser le tableau de variation de g sur D_E
- 5- a) Déterminer l'intersection de ζg et l'axe des abscisses
 - b) Tracer la courbe ζg sur D_E

Exercice n°6

Soit f la fonction définie par: $f(x)=\sin(2x)$

- 1- Etudier et représenter graphiquement la courbe de f
- 2- Déterminer toutes les axes de symétrie de f et les centres de symétries de Cf
- 3- a) Vérifier que pour tout $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$ on a: $\sin 2x = \frac{2tgx}{(1 + tg^2x)}$
- b) Déterminer alors graphiquement le nombre des solutions

Dans l'intervalle
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 de l'équation: mtg²x-2tgx+m=0
Selon le réel m

4- Soit g la fonction définie par: $g(x)=2\cos 2(x-\frac{\pi}{4})$ utiliser la courbe de f pour représenter celui