Série N 2

Produit scalaire

Exercice n1:

On considère le triangle ABC tel que AB = a, AC = 3a (où a est un réel strictement positif)

et BÂC = $\frac{2 \pi}{3}$, H le projeté orthogonale de C sur (AB) et le point O est le milieu de [BC]

- 1) Faire une figure
- 2)
- a) Calculer \overrightarrow{AB} . \overrightarrow{AC}
- b) En déduire AH et CB puis CH en fonction de a
- 3)
- a) Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$
- b) En déduire AO en fonction de a
- 4)
- a) Soit le point I est le milieu de [AO] ; montrer que pour tout point M de P on a : $\overrightarrow{MA}.(\overrightarrow{MB} + \overrightarrow{MC}) = 2 \text{ (MI}^2 \text{IA}^2)$
- b) Déterminer l'ensemble des points M de p tel que $\overrightarrow{MA}.(\overrightarrow{MB} + \overrightarrow{MC}) = \frac{a^2}{4}$

Exercice n2:

On considère ABC un triangle isocèle de sommet principal A tel que AB = $2\sqrt{2}$, $\widehat{ACB} = \frac{\pi}{6}$ et le point I est le milieu de [AB]

t to point I est to mineu de [I IB]

1) Calculer BC, CI, et $\overrightarrow{CA} \cdot \overrightarrow{CB}$

- 2)
- a) Montrer que l'ensemble E des point M du plan M tel que \overrightarrow{MA} . $\overrightarrow{MB} = 12$ est un cercle de centre I dont on déterminera son rayon
- b) Vérifier que C est un point de E
- 3) Montrer que l'ensemble D des points M du plan P tels que $\overrightarrow{MA}^2 \overrightarrow{MB}^2 = -12$ est une droite
- 4) Le plan P rapporté à un repère orthonormé (O \vec{i} , \vec{j}); les points A(0,1) et B(2,3)
 - a) Vérifier que AB = $2\sqrt{2}$
 - b) Déterminer une équation cartésienne de D
 - c) Vérifier que les droites D et (AB) sont perpendiculaire
 - d) Calculer d (I,D). en déduire la position relative de la droite D et le cercle E

Exercice n 3:

Soit ABC un triangle rectangle en A . G son centre de gravité de I le milieu de [BC]

- 1) Montrer que \overrightarrow{GB} . $\overrightarrow{GC} = \frac{-2}{9}$ BC²
- 2) On considère l'application $f: P \longrightarrow R$ $M \longrightarrow \overrightarrow{MB} \cdot \overrightarrow{MC} \frac{2}{3} \overrightarrow{AI} \cdot \overrightarrow{MG}$

<u>Barraj itizez</u> <u>3^{ème} Sc.exp</u>

- a) Calculer f(A) et f(G) en fonction de BC
- b) Montrer que pour tout point M de P on a $f(M) = MG^2 \frac{2}{9} BC^2$
- c) En déduire l'ensemble (C) des points M de P vérifiant $f(M) = -\frac{1}{9} BC^2$
- 3) Dans le plan P rapporté à un repère orthonormé (O $\vec{,i}$, \vec{j}), on considère les points A(1,1), B(2,-1) et C(3,2)
 - a) Vérifier que le triangle ABC rectangle
 - b) Déterminer les coordonnées de G puis donner une équation de (C)

Exercice n4:

Dans le plan P on considère un triangle rectangel et isocèle en A tel que AB = a, soit E un point de [AB] distinct de A et B et $F \in [AC]$ tel que AE = AF, on pose I = A * C et O = B * F

- 1) Calculer en fonction de a, \overrightarrow{AC} . \overrightarrow{IB}
- 2)
- a) Montrer que (AO) et (CE) sont perpendiculaires
- b) Déterminer l'ensemble E_1 des points M de P tel que \overrightarrow{OA} . $\overrightarrow{OM} = \overrightarrow{OA}$. \overrightarrow{OC}
- 3) Soit $E_2 = \{M \in P \text{ tel que } MA^2 + \overrightarrow{AC}.\overrightarrow{MB} = \frac{3a^2}{4}\}$. Montrer que $MA^2 + \overrightarrow{AC}.\overrightarrow{MB} = \overrightarrow{MA}.\overrightarrow{MC}$, déduire l'ensemble E_2
- 4) Soit G le barycentre de (A,1) et (B,2), on pose $f(M) = MA^2 + 2MB^2$
 - a) Montrer que pour tout M de P, $f(M) = 3MG^2 + GA^2 + 2GB^2$
 - b) Déterminer l'ensemble E_3 des points M tel que $f(M) = a^2$
- 5) Déterminer l'ensemble $\Delta = \left\{ M \in P \ tel \ que \ MB^2 + MF^2 2MA^2 = \frac{BF^2}{2} \right\}$

Exercice n5:

Soit ABC un triangle tel que AB = 4, AC = 6 et BC = 8, on désigne par I le milieu de [AB] et J le milieu de [AC]

- 1) Montrer que \overrightarrow{AB} . $\overrightarrow{AC} = \frac{1}{2} (AB^2 + AC^2 BC^2)$
- 2) Calculer \overrightarrow{AB} . \overrightarrow{AC} puis déduire cos \widehat{BAC}
- 3) Soit H le projeté de B sur (AC), calculer AH
- 4) Calculer \overrightarrow{BA} . \overrightarrow{BC} , en déduire BJ

5)

- a) Montrer que pour tout point M du plan on a MA 2 + MB 2 = 2MI 2 + 8
- b) Calculer CI
- c) Déterminer l'ensemble $E = \{M \in P \text{ tel que } MA^2 + MB^2 = 100\}$
- 6) Montrer que pour tout point M du plan on a \overrightarrow{MA} . $\overrightarrow{MC} = MJ^2 9$
- 7) Calculer \overrightarrow{IA} . \overrightarrow{IC} . déduire l'ensemble $E' = \{M \in P \text{ tel que } \overrightarrow{MA} . \overrightarrow{MC} = 7\}$
- 8) Soit O le milieu de [IJ]
 - a) Montrer que MI² MJ² = $2\overrightarrow{IJ}$. \overrightarrow{OM}
 - b) Déterminer l'ensemble E " = $\{M \in P \text{ tel que } MA^2 + MB^2 2 \overrightarrow{MA} . \overrightarrow{MC} = -6\}$