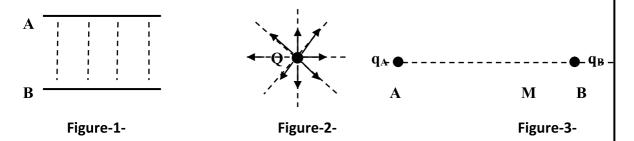
Prof : Klai Nejib	Physique – Chimie	Date: 4/11/2010		
(1)				
Chimie (7 points)			В	
Exercice 1(4 points)			A A	A
Le laiton est un alliage formé de deux métaux le cuivre et le zinc .			R	p
On fait réagir un échantillon de 15 g de cet alliage sur une solution d'acide chlorhydrique en large $excès$. Il se dégage un volume $V=0.9$ L de dihydrogène mesuré dans les conditions normales de température et de pression . En ajoutant au filtrat , une solution d'hydroxyde de sodium , il se forme un précipité .			M (A C I TE
1°) En se basant sur l'échelle de la classification électrochimique des métaux , montrer que seul le zinc a réagit .			0,5	A
2°) Ecrire l'équation de la réaction entre le zinc Zn et les ions H_3O^+ . Préciser les couples redox mis en jeu au cours de cette réaction d'oxydoréduction .			0,5 0,5	B A
3°) a) Calculer la quantité de matière de dihydrogène recueillie à la fin de la réaction .			0,5	A
b) En déduire la quantité de matière de zinc contenue dans l'échantillon.			0,5	A
4°) a) Calculer la masse du zinc qui a réagi .			0,5	A
b) En déduire le pourcentage massique, en zinc et en cuivre, du laiton.			1	В
On donne : électropositivité				
	Zn H Cu	décroissante		
$V_m = 22,4 \text{ L.mol}^{-1}$. et $M_{Zn} = 65,4 \text{ g.mol}^{-1}$.				
Exercice 2(3 points)				
1°) On considère les deux entités chimiques : MnO ₄ et Mn ²⁺ .			0,5 A	
 a) Déterminer le n.o. de Mn dans chaque entité . b) Montrer que ces deux entités forment un couple redox . Quel est son symbole ? c) Ecrire l'équation formelle équilibré associée à ce couple redox . 			1 A 0,5 B	
2°) Soit l'équation formelle associée à un deuxième couple redox :				
$ClO_3^- + 4 H_3O^+ + 4 \bar{e} \longrightarrow ClO^- + 6 H_2O.$				
a) Préciser le couple redox dans cette équation .b) Déduire l'équation bilan de la réaction d'oxydoréduction qui se produit entre		0,5 A	4	
<u> </u>	e la réaction d'oxydoréduction qu que le premier couple est plus oxy	•	0,5	С

Devoir de contrôle n°1

Classe: 3^{ème} Sc₁

Durée : 2 Heures


Lycée Avenue Mongi Slim

Kef

Physique(13 points)

Exercice 1(7 points)

I) Les figures n°1, 2 et 3 représentent quelques spectres du champs électrique :

0,25 A

0,75 A

1 A

1 A

1,25 C

0.75 B

- 1°) Orienter les lignes de champ entre les plaques conductrices A et B.
- 2°) Préciser le signe de chaque charge Q, q_A et q_B.
 - II) On considère la figure-3- où la distance AB = 10 cm et que $q_A = 4.10^{-6}$ C.
- 1°) Déterminer les caractéristiques du vecteur champ électrique E_M créé par la charge q_A au point M situé à la distance d = AM = 6 cm de A.
- 2°) Calculer la valeur de la force électrique exercée par q_A sur un corps (C) de charge $q_C = -2.10^{-6}$ C placée au point M. Représenter ce vecteur force F à une échelle que vous précisez.
- 3°) Sachant que le champ électrique résultant créé simultanément par q_A et q_B au point M est nul:
 - a) Déterminer, en justifiant la réponse, les caractéristiques du vecteur champ électrique E_B créé par la charge q_B au point M.
 - b) En déduire la charge q_B.
- 3°) Le corps (C) chargé supposé de masse m = 0,3 g est en équilibre entre les deux plaques A et B en un point N.
 - a) Comment qualifie-t-on le champ électrique entre les plaques. 0.75 AReprésenter le vecteur E aux points P et O.
 - b) Représenter les forces qui s'exercent sur (C) en N.
 - P 0,5 Ac) En déduire l'intensité du vecteur champ électrique N qui règne entre les deux plaques. $0,75 \; B$ On donne : $\|g\| = 9.8 \text{ N.Kg}^{-1}$. В

Exercice 2 (6 points)

- 1°) Un solénoïde (S) de longueur L = 80 cm et comportant 500 spires est traversé par un courant électrique d'intensité I = 1,5 A.
 - a) Sur la figure-1- de la feuille annexe, représenter le spectre magnétique à l'intérieur 1 A de (S), le vecteur champ magnétique B en son centre O et préciser la nature de ses faces.

- b) Quelle est la nature du champ magnétique à l'intérieur de (S)? Calculer sa valeur.
- 1 A

- 2°) L'axe du solénoïde étant perpendiculaire au méridien magnétique . On place une petite aiguille aimantée au centre O de ce solénoïde .
 - a) Représenter l'aiguille aimantée dans les deux cas suivants :
- 1 A

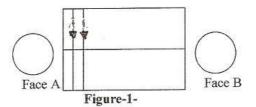
- I = 0 (Figure-2-)
- ** $I=I_1 = 0,1 A (Figure-3-)$
- b) Calculer l'intensité du vecteur champ B résultant en O.

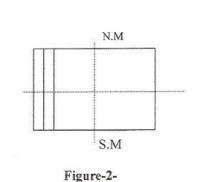
0,75A

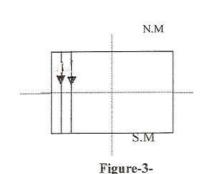
c) Déterminer l'angle α que peut faire la direction de l'aiguille aimantée lorsqu'on fait passer dans le solénoïde le courant d'intensité I_1 .

1,25 B

d) Déterminer l'angle β dont il faut tourner le solénoïde pour que l'aiguille tourne de 90°. Représenter sur un schéma clair , le solénoïde , l'aiguille aimantée et préciser l'angle β .


1C


On donne: $\|B_h\| = 2.10^{-5} T$


Bon Travail

Nom & Prénom

Classe:....

