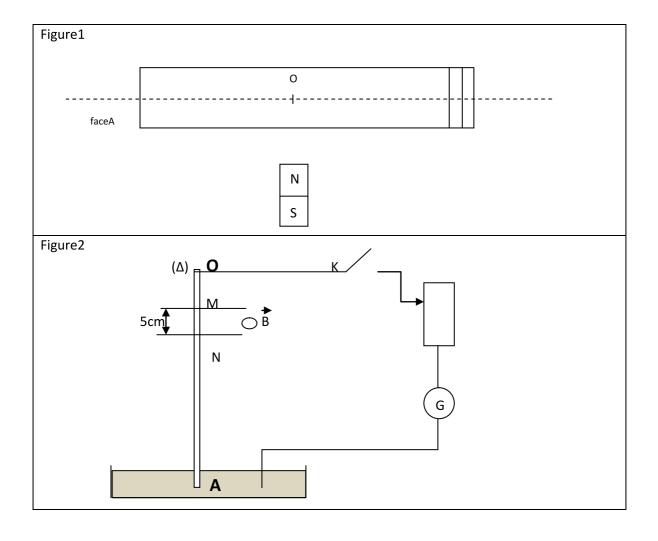
Lycée cité Elhabib	DEVOIR DE SYNTHESE N°1	Date	Classe	durée
2013-2014	Sciences physiques			
Trimestre I	Mme BOUAZIZ	06.12.2013	3Sc	2h

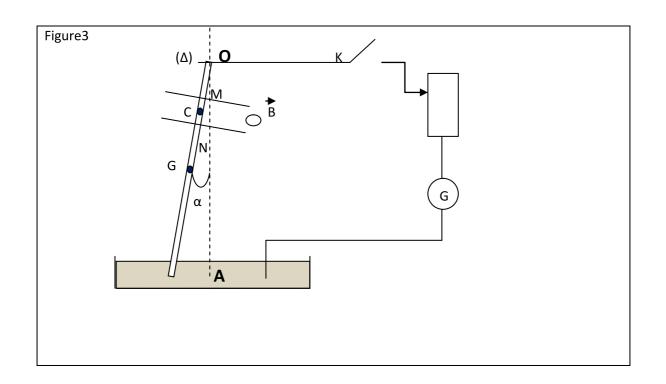
- Le sujet comporte quatre pages.
- La page 4 est à coller et à rendre avec la copie.
- On donne: $Vm = 24L.mol^{-1}$; $M_{Al} = 27g.mol^{-1}$. $M_{Cr} = 52g.mol^{-1}$. $M_O = 16g.mol^{-1}$. $M_{Na} = 23g.mol^{-1}$

$M_H = 1$ g.mol ⁻¹ . et 2,5=10 ^{0.4} .		
CHIMIE (9points)	Cap	Bar
EXERCICE1 (4,5points)		
On considère les entités chimiques suivantes :		
Cr_2O_3 ; Al ; Cr ; Al_2O_3 ;		
1) Définir le nombre d'oxydation.	A_{I}	0,5
2) Déterminer le nombre d'oxydation du chrome et de l'aluminium dans chacune des		
entités chimiques précédentes.	A_2	0,5
3) Donner les couples redox que l'on peut former à partir des entités précédentes.		
4) a) Ecrire l'équation bilan de la réaction d'oxydoréduction de l'oxyde de		
chrome III (Cr_2O_3) sur l'aluminium (Al) .	1	0.5
b) Préciser l'oxydant et le réducteur de la réaction ayant eut lieu.	A_2	0,5
c) Nommer en le justifiant, la réaction subit par chacun des réactifs.	A_2	0,5
d) Calculer la masse de chrome obtenu lorsqu'on fait réagir 5g d'oxyde de	A_2	0,5
chrome III (Cr_2O_3) sur 8,5g d'aluminium (Al).	-	
EVERCICES (A.F)	C	1
EXERCICE2 (4,5points)		
On dispose d'une solution (S_1) d'acide nitrique HNO ₃ de concentration C_1 =2,5.10	A_2	0,5
3 mol. L^{-1} et de volume V_{1} =100m L et d'une solution aqueuse (S_{2}) de soude (Na^{+} +OH) de volume V_{1} =200m L de souventuation C_{1} =0.1me LL^{-1} On mélance (S_{1}) et (S_{2})	712	$\begin{bmatrix} 0, 5 \\ 1 \end{bmatrix}$
) de volume V_2 =200mL de concentration C_2 =0,1mol. L^{-1} . On mélange (S_1) et (S_2) .	A_1	1
1) Ecrire l'équation simplifiée de la réaction qui a lieu. 2) Préciser l'acide et la base de Bronsted.		0,5
3) Donner les couples acide-base mise en jeu dans cette réaction.		
4) Ecrire les équations formelles correspondant à chacun de ces couples.		
5) Calculer la masse de soude dissoute pour obtenir (S_2) .		1
6) La solution (S_1) d'acide nitrique a un $pH=2,6$.		$\begin{bmatrix} I \\ 0,5 \end{bmatrix}$
a) L'acide nitrique est –il fort ou faible ? Justifier la réponse.		0,5
b) Déduire l'équation de la réaction d'ionisation de l'acide nitrique dans l'eau.		0,5
c) Au cour de la réaction précédente 6)b) l'eau joue-t-il le rôle d'acide ou de		
base de Bronsted? Justifier la réponse.		
	A_I	
PHYSIQUE (11 points)		
EXERCICE1 (7points)	A_2 A_2	
Les parties I et II sont indépendantes .	112	
<u>Partie1:</u>		
On donne: $\mu o = 4\pi . 10^{-7}$ SI. On prendra $\pi = 3,14$.		
On néglige le champ magnétique terrestre.		0,5
On considère un solénoïde de longueur $L=31,4$ cm comportant un nombre de spire $N=200$		
spires. Le solénoïde est traversé par un courant d'intensité I = 0,025 A . Voir figure1 page		0.5
annexe.		0.5
	<u> </u>	U, J

ap	Bar	
A_1	0,5	
	0,5	

- 1) Représenter le spectre magnétique du solénoïde sur la figure1 page3. Déduire la nature du champ magnétique à l'intérieur du solénoïde.
- 2) Sachant que la face A du solénoïde est une face nord, représenter sur la figure 1 :
 - a) Le sens du courant électrique.
 - b) Le vecteur champ magnétique \overrightarrow{B}_s crée par le courant au centre O du solénoïde. (1cm représente $10^{-5}T$)
- 3) Un aimant droit est approché à perpendiculairement à l'axe du solénoïde comme l'indique la figure l page annexe.
 - a) Représenter au centre O du solénoïde le vecteur champ magnétique $\overset{\bullet}{B}_a$ crée par l'aimant sur la figure l page annexe. On donne $ll\overset{\bullet}{B}_a ll = 3.10^{-5} T$.
 - b) Déterminer les caractéristiques du vecteur champ magnétique résultant au point O. Le représenter sur la figure 1 page annexe.


Partie II:


 $IIgII=10N.kg^{-1}$.

Une tige (OA) en cuivre, rigide, verticale et homogène de longueur L=30cm de masse m=10g est mobile autour d'un axe (Δ) horizontale et perpendiculaire à la figure 2 passant par O l'autre extrémité A plonge dans du mercure qui permet le passage du courant provenant d'un générateur de tension continue. Un champ magnétique B uniforme de valeur 0,03T est appliqué par l'intermédiaire d'un aimant en U sur une portion MN=5cm de la tige. Lorsque l'interrupteur (K) est ouvert la tige reste sur une position verticale. Lorsque l'interrupteur (K) est fermé la tige s'écarte de sa position initiale d'un angle α l'intensité du courant est alors I=5A. (Voir figure 2).la tige est alors en équilibre.

- 1) Représenter les forces qui s'exercent sur la tige dans sa nouvelle position d'équilibre.
- 2) Déterminer les caractéristiques de la force de Laplace.
- 3) Indiquer sur le schéma des figures 1 et 2 le sens du courant ainsi que les polarités du générateur.
- 4) Calculer la valeur de l'angle α.
- 5) L'aimant en U est déplacé vers l'extrémité A.Comment varie alors l'angle d'inclinaisonα

Page annexe à remplir et à rendre avec la copie			
Nom :	Prénom :	classe :	

