Osérie nº 10

Cinématique

Exercice n° 1:

Un mobile M supposé ponctuel se déplace dans un plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) . A chaque instant le vecteur accélération est $\overrightarrow{a} = 2.\overrightarrow{j}$. A la date $t_1 = 1$ s, le vecteur vitesse est $\overrightarrow{V_1} = \overrightarrow{i} - 3.\overrightarrow{j}$ et le vecteur position est $\overrightarrow{OM_1} = 3.\overrightarrow{i} - 4.\overrightarrow{j}$.

- 1) Déterminer en fonction du temps les expressions du vecteur vitesse \overrightarrow{V} et du vecteur position \overrightarrow{OM} .
- 2) Déterminer l'équation de la trajectoire.
- 3) A quel instant le vecteur vitesse aura une direction perpendiculaire au vecteur accélération ?
- 4) A l'instant $t_2 = 4$ s, le mobile passe par le point M_2 avec une vitesse $\overline{V_2}$.
 - a) Déterminer les coordonnées du point M₂.
 - **b)** Donner les caractéristiques du vecteur $\overrightarrow{\mathbf{V_2}}$.
 - c) Représenter au point M_2 les vecteurs \overrightarrow{a} et $\overrightarrow{V_2}$.
 - d) Déduire les valeurs des composantes tangentielles et normales de l'accélération ainsi que le rayon de courbure de la trajectoire au point M_2 .

Exercice n° 2:

- I. Le vecteur vitesse d'un mobile M dans un repère $(\mathbf{O}, \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}})$ s'écrit : $\overrightarrow{\mathbf{V}} = 3.\overrightarrow{\mathbf{i}} + (-4t + 4).\overrightarrow{\mathbf{j}}$; à $\mathbf{t} = 0$ s le mobile passe par le point \mathbf{M}_0 $(\mathbf{0}; -2)$.
 - 1) Exprimer dans le repère $(0, \vec{i}, \vec{j})$ les vecteurs :
 - a) Accélération a.
 - **b)** Position **OM**.
- 2) Trouver l'équation cartésienne de la trajectoire du mobile M et représenter la.
- 3) a) A quel instant le vecteur vitesse est parallèle à l'axe (Ox)?
 - b) Trouver la position A du mobile à cet instant.
 - c) Représenter les vecteurs vitesse et accélération au point A.
 - d) Trouver les valeurs des accélérations tangentielle et normale au point A.
 - e) En déduire le rayon de courbure de la trajectoire en ce point.
- 4) Trouver le rayon de courbure de la trajectoire à l'instant t = 0 s.
- II. Un deuxième mobile M' de loi horaire $\mathbf{x}(t) = (-1, 1.t + 8)$ est en mouvement rectiligne sur l'axe $(\mathbf{O}\mathbf{x})$ du repère $(\mathbf{O}, \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}})$.
 - 1) Chercher l'instant de passage de M' par l'abscisse x = 3 m.
 - 2) Le mobile M' rencontre-t-il le mobile M? Sinon quelle abscisse initiale x_0 devrait avoir M' pour que la rencontre ait lieu ?