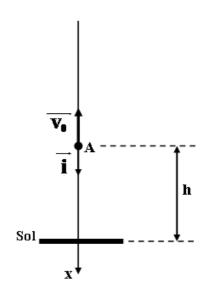
Série nº 10

(Cinématique – Chute libre – Les alcools)

Exercice n° 1:

Un mobile ponctuel se déplace dans un repère (\mathbf{O} ; \mathbf{i} ; \mathbf{j}). Son mouvement débute à l'instant $\mathbf{t} = \mathbf{0}$ s, son vecteur vitesse est $\overrightarrow{\mathbf{V}} = \overrightarrow{\mathbf{i}} + 2 \, \mathbf{t} \, \overrightarrow{\mathbf{j}}$ (en $\mathbf{m.s^{-1}}$). A l'instant $\mathbf{t} = \mathbf{4}$ s il passe par le point \mathbf{A} de coordonnées $\mathbf{x_A} = \mathbf{2}$ m; $\mathbf{y_A} = \mathbf{0}$ m.

- 1) Etablir les lois horaires du mouvement.
- 2) a. Déterminer l'équation cartésienne de la trajectoire.
- **b.** Construire la courbe de la trajectoire dans le repère $(\mathbf{O}; \overrightarrow{\mathbf{i}}; \overrightarrow{\mathbf{j}})$ entre les instants $\mathbf{t}_0 = \mathbf{0}$ s et $\mathbf{t} = \mathbf{5}$ s. (Echelle: $\mathbf{1}$ cm $\rightarrow \mathbf{1}$ m)
 - c. Déterminer la durée Δt du mouvement entre le sommet de la trajectoire et le point A.
- 3) a. Déterminer le vecteur accélération a .
 - **b.** Déterminer les caractéristiques du vecteur vitesse $\overrightarrow{V_A}$, lorsque le mobile passe par le point A.
 - c. Représenter sans échelle le vecteur vitesse $\overrightarrow{V_A}$ et le vecteur accélération \overrightarrow{a} .
 - d. En déduire les composantes tangentielle et normale du vecteur accélération au point A.


Exercice n° 2:

Une bille est lancée verticalement vers le haut, à un instant pris comme origine des dates, à partir d'un point A situé à la distance A du sol, avec une vitesse initiale de valeur $\|\overrightarrow{V_0}\| = 20 \text{ m.s}^{-1}$.

La résistance de l'air est négligeable et la bille n'est soumise qu'à son poids.

- 1) Etablir l'équation horaire $\mathbf{x} = \mathbf{f}(\mathbf{t})$ du mouvement de la bille dans le repère (\mathbf{A} ; $\overrightarrow{\mathbf{i}}$), où $\overrightarrow{\mathbf{i}}$ est un vecteur unitaire dirigé vers le bas.
- 2) Montrer que le mouvement comporte deux phases et préciser à quel instant commence la deuxième phase.
- 3) Sachant que la bille atteint le sol à l'instant de date t = 5 s, déterminer h.
- 4) Déterminer la hauteur maximale (par rapport au sol) atteinte par la bille
- 5) Déterminer la valeur algébrique de la vitesse de la bille quand elle arrive au sol.

On donne $\|\overrightarrow{\mathbf{g}}\| = 10 \text{ m.s}^{-2}$.

Exercice n° 3:

Afin d'identifier un alcool A de formule brute $C_nH_{2n+1}OH$, on prélève deux échantillons de ce même alcool de masses respectives $m_1 = 3.7$ g et $m_2 = 7.4$ g et on réalise les expériences suivantes.

Expérience 1 : La combustion complète de l'échantillon de masse $m_1 = 3.7$ g fournit 8,8 g de dioxyde de carbone.

- 1) Ecrire l'équation générale de la réaction de combustion.
- 2) Montrer que la masse molaire de l'alcool A est de la forme M(A) = 18,5.n
- 3) En déduire alors la formule brute de A.
- 4) Donner la formule semi développée, le nom et la classe de tous les alcools isomères de A.

Expérience 2 : L'oxydation ménagée de l'échantillon de masse $m_2 = 7.4$ g par une solution acidulée de permanganate de potassium (KMnO₄) de concentration C = 0.8 mol.L⁻¹ fournit un composé B qui réagit avec la 2.4 D.N.P.H. mais qui ne rosit pas le réactif de Schiff.

- 1) Identifier A (On précisera sa formule semi développée, sa classe et son nom).
- 2) Préciser alors la formule semi développée et le nom du composé B.
- 3) Ecrire en formules brutes l'équation bilan de la réaction redox qui a lieu.
- 4) Quel volume de la solution de KMnO₄ a-t-on utilisé pour oxyder tout l'échantillon de masse m₂ de l'alcool A?

On donne $M(C) = 12 \text{ g.mol}^{-1}$; $M(H) = 1 \text{ g.mol}^{-1}$ et $M(O) = 16 \text{ g.mol}^{-1}$.