Lycée technique Teborba	Devoir de synt	2013/2014		
M anouba	Epreuve : M a thématique	25	Coefficient: 2,5	Prof : H-Jamel
SECTION : économic-gestion		Durée : 2 heures		Classe : ba o-eco

Exercice n°1

Cocher la réponse exacte

1) Une primitive de $f(x) = \frac{x}{\sqrt{x^2+1}}$ sur IR qui s annule en 0 est :

a)
$$F(x) = \sqrt{x^2 + 1} - 1$$

a)
$$F(x) = \sqrt{x^2 + 1} - 1$$
 b) $F(x) = \sqrt{x^2 + 1} - 2$ c) $F(x) = \frac{1}{\sqrt{x^2 + 1}}$

$$c) F(x) = \frac{1}{\sqrt{x^2+1}}$$

2) Soit f une fonction dérivable en 1 telle que f(1) = 0 et f'(1) = 1 alors léquation de la tangente a la courbe Cf au point A(1,0) a pour équation

$$a) y = x - 1$$

$$b) y = x$$

$$c) y = x + 1$$

3) le déterminant de la matrice $M = \begin{pmatrix} 1 & 0 & -1 \\ -3 & 2 & 0 \\ 0 & -4 & 1 \end{pmatrix}$ est :

Exercice n°2

Soit f la fonction définie sur]2, $+\infty$ [par $f(x) = \frac{3x-1}{x-2}$

- 1) Montrer que f est dérivable sur]2, $+\infty$ [est que f '(x) = $\frac{-5}{(r-2)^2}$
- 2) Dresser le tableau de variation de f
- 3) a) montrer que f réalise une bijection de $]2, +\infty[$ sur un intervalle J que l on précisera
 - b) calculer $f^{-1}(4)$
 - c) justifier que f^{-1} est dérivable en 4 et calculer $(f^{-1})'(4)$
 - d) montrer que pour tout réel $\in x J$ on a $f^{-1}(x) = \frac{2x-1}{x-3}$
- 4) soit la fonction $h(x) = f(\sqrt{x})$ pour tout réel x > 4
 - a) montrer que h est dérivable sur]4, $+\infty$ [et calculer h '(x)
 - b) déduire le tableau de variation de la fonction h

*page*I/2

Exercice n°3

Soit la fonction $g(x) = \frac{x+2}{(x+1)^3}$ pour tout réel $x \in [0, +\infty[$

- 1) justifier que g admet au moins une primitive
- 2) préciser le sens de variation de la fonction primitive de g sur $[0, +\infty[$
- 3) a) vérifier que $g(x) = \frac{1}{(x+1)^2} + \frac{1}{(x+1)^3}$
 - b) déduire la primitive G de la fonction g qui s annule en 0 c)déterminer alors le tableau de variation de la fonction G sur $[0, +\infty[$

Exercice n°4

On considère les deux matrices
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 4 & 4 \\ 2 & 1 & 4 \end{pmatrix}$

- 1) montrer que la matrice A est inversible
- 2) a) calculer la matrice M = (B-2A) puis la matrice $A \times M$
 - b) déduire la matrice A⁻¹ l inverse de A
- 3) une usine fabrique 3 types de vélos : V_1 , V_2 et V_3 . le tableau suivant résume le nombre de vélos fabriques dans 3 jours.

	V_I	V_2	V_3	recettes
1 ^{iere} jour	2	1	2	850d
2 ^{eme} jour		2	1	865d
3 ^{eme} jour	1	1	1	510d

- a) transformer les informations de tableau dans un système de 3 équations a 3 inconnues
- b) quel est le prix de chaque type de vélo

bareme: 3-7-4,5-5,5

bon courage