Exercice n°1:

Une seule réponse est exacte, cocher-la :

- 1) Soit $f(x)=x^3+x+1$: L'équation f(x)=0 admet dans [-1,0]
 - a) Une seule solution b) deux solutions c) trois solutions
- 2) Pour tout $x \in \mathbb{R}$; $g(x)=(x^2+1)^5$ alors f'(x) égale à : a) $5(x^2+1)^4$ b) $10x(x^2+1)^4$ c) $5(2x)^4$
- 3) f est continue strictement décroissante sur [-1,3[et f([-1,3])=[1,2] alors :

a)
$$f(-1)=1$$
 et $f(3)=2$ b) $f(-1)=2$ et $f(3)=1$ c) $f(1)>f(0)$

b)
$$f(-1)=2$$
 et $f(3)=1$

c)
$$f(1) > f(0)$$

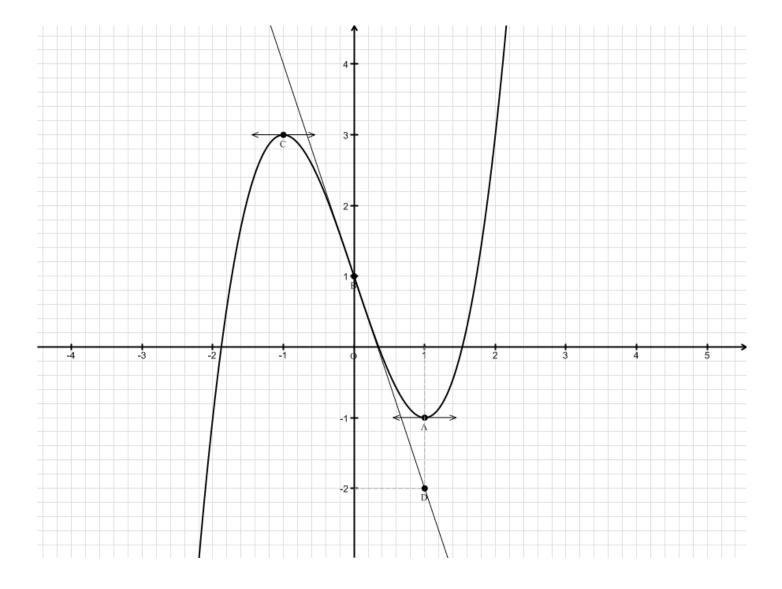
4)
$$A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$ et $A \times B = C$ alors $C_{32} = a$

Exercice n°2:

On considère la fonction
$$f$$
 définie sur \mathbb{R} par $\begin{cases} f(x) = x^3 + x + 3 \text{ si } x < -1 \\ f(x) = \sqrt{x+1} - 1 \text{ si } x \ge -1 \end{cases}$

et on désigne par @ sa courbe représentative sur (o, i, j)

- 1) a) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$
 - b) Vérifier que $x^3 + x + 4 = (x+1)(x^2-x+4)$
 - c) Etudier la continuité de f en (-1)
- 2) Etudier la dérivabilité de f en (-1); Interpréter graphiquement les résultats
- 3) Ecrire les équations des demi tangentes à @au point d'abscisse (-1)
- 4) a)Montrer que f réalise une bijection de $[-1, +\infty]$ sur un intervalle J à préciser
 - b) Soit $x \in I$ Déterminer $f^{-1}(x)$


Exercice n•3:

Soit le système (S) :
$$\begin{cases} x + y + z = 63 \\ 8x + y + z = 301 \\ 3x + 4y + 3z = 214 \end{cases}$$

- 1) Donner l'écriture matricielle du système (S).
- 2) Soit M la matrice associée au système (S) .Montrer que M est inversible .
- 3) On donne $N = \frac{1}{7} \begin{pmatrix} -1 & 1 & 0 \\ -21 & 0 & 7 \\ 29 & -1 & -7 \end{pmatrix}$
 - a) Vérifier que N est la matrice inverse de M
 - b) Déduire la résolution du système (S) dans \mathbb{R}^3

Exercice n°4:

Dans le graphique ci-dessous Cf est la courbe représentative, dans un repère orthonormé d'une fonction définie sur IR.

- 1) a) Déterminer f(0); f(-1); f(1); f'(1) et f'(0).
- b) Donner une équation de la tangente T à Cfau point d'abscisse 0.
- 2) a) Etudier la position de C_f et T.
 - b) Interpréter les résultats trouvées.
- 3) Dresser le tableau de variations de f.
- 4) Soit g la restriction de f à l'intervalle [-1,1].
- a) Montrer que g réalise une bijection de [-1,1] sur un intervalle J que l'on précisera.
- b) Etudier la dérivabilité de g^{-1} à droite de 3.