Lycée secondaire Ettaoufik Sousse

Enseignant: M' FERSI Lotfi

Niveau:4 ème éco Date: 10/12/2014 Devoir de synthèse N°1

Durée: 2h Nombre de pages : 2

MATHEMATIQUES

NB: L'utilisation de <u>la calculatrice personnell</u>e est autorisée, cependant son <u>échange est strictement interdit.</u>

EXERCICE N° 1 (3 pts)

Pour chacune des questions suivantes, une seule des trois réponses proposées est juste. Indiquer sur votre copie le numéro de la question et la lettre correspondante à la réponse choisie (aucune justification n'est demandée):

- 1) L'inverse de la matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ est :
 - **a.** $A^{-1} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$ **b.** $A^{-1} = \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix}$ **c.** $A^{-1} = \begin{pmatrix} -1 & 3 \\ 2 & -5 \end{pmatrix}$.
- 2) Si M est une matrice carrée d'ordre 3 tel que $M^2+M-I_3=0$ où 0 est la matrice nulle, alors M^{-1} =
 - $M+I_{2}$
- **b.** M-I₂
- \mathbf{c} . -M+ \mathbf{I}_2 .

- $3) \quad \lim_{x \to 0} \ \frac{\sqrt{x+4}-2}{x} =$

EXERCICE N° 3 (6 pts)

On considère dans IR³ le système (S) : $\begin{cases} x + 3y + 2z = 1 \\ 2y - z = 4 \end{cases}$

On appelle M la matrice de (S).

- **1)** Ecrire (S) sous forme matricielle.
- **2)** Montrer que (S) admet une solution unique.
- 3) Soit la matrice $N = \begin{pmatrix} -5 & 4 & 7 \\ 1 & 0 & -1 \\ 2 & -2 & -2 \end{pmatrix}$.
 - a) Calculer la matrice M.N.
 - **b)** En déduire la matrice M⁻¹.
 - c) Déterminer alors la solution de (S).

EXERCICE N° 3 (5 pts)

On donne ci-contre la courbe ζ d'une fonction f définie sur IR dans un repère orthonormé $(0; \vec{u}; \vec{v})$.

Par une lecture graphique:

- **1)** Déterminer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
- **2)** Déterminer $\lim_{x \to +\infty} \frac{f(x)}{x} \lim_{x \to +\infty} \frac{1}{f(x) x}$.
- **3)** Déterminer f('3), f'(2) et $\lim_{x\to 1^+} \frac{f(x)-4}{x-1}$.

EXERCICE N° 4 (6 pts)

Soit f la fonction définie sur IR par $f(x) = \frac{1}{3}x^3 - 4x + 1$, et ζ sa courbe dans un repère orthonormé $(0; \overrightarrow{u}; \overrightarrow{v})$.

- **1)** Calculer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x) \lim_{x \to +\infty} \frac{f(x)}{x}$ et $\frac{f(x)}{x} \lim_{x \to -\infty}$. Interpréter graphiquement les résultats.
- **2)** a) Montrer que f est dérivable sue IR et que f'x) = (x-2)(x+2).
 - **b)** Combien y a-t-il de points de ζ où la tangente est horizontale ?
 - 3)a) Dresser le tableau des variations de f.
 - **b)** On donne $f(-2) = \frac{19}{3}$ et $f(2) = -\frac{13}{3}$, quel est le nombre des solutions de l'équations f(x)=0 dans IR ?
- 3) a) Montrer que l'équation f(x) = 0 admet dans]0;1[une solution unique α .
 - **b)** Vérifier que $\alpha = \sqrt{\frac{12\alpha 3}{\alpha}}$.