EXERCICE 1(8pts)

La courbe C_f ci-dessous est celle d'une fonction f définie sur $[0, +\infty[$

- 1. On utilisant le graphique, déterminer:
 - (a) f(0), $f'_d(0)$ et $\lim_{x \to +\infty} f(x)$
 - (b) Le tableau de variation de f.
 - (c) Montrer que f est une bijection de $[0, +\infty[$ sur]-1, 4]
- 2. La fonction f représentée à pour expression $f(x) = \frac{4-x^2}{1+x^2}$, pour tout $x \in [0, +\infty[$
 - (a) Vérifier que f est dérivable sur $[0, +\infty[$ et que $f'(x) = \frac{-10x}{(1+x^2)^2}$
 - (b) Ecrire l'équation de la tangente T à C_f au point d'abscisse 2.

3.

- (a) Calculer $f^{-1}\left(\frac{1}{4}\right)$ et $(f^{-1})'\left(\frac{1}{4}\right)$
- (b) Montrer que f^{-1} est dérivable sur]-1,4[
- (c) Tracer $C_{f^{-1}}$ dans le repère $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$
- 4. Déterminer l'expression de $f^{-1}(x)$.
- 5. Soit g la fonction définie sur $[0, +\infty[$ par g(x) = f(x) x
 - (a) Montrer que g est décroissante sur $[0, +\infty[$.
 - (b) Montrer que l'équation g(x) = 0 admet une solution unique $\alpha \in \left]1, \frac{3}{2}\right[$.

EXERCICE 2(5pts)

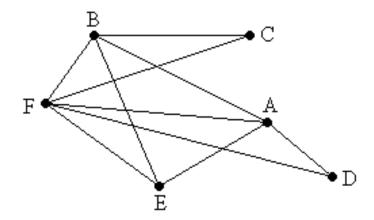
On considère la matrice carrée $M=\left(\begin{array}{ccc}2&-1&-1\\3&4&-2\\3&-2&4\end{array}\right)$

- 1. (a) Calculer $d\acute{e}t(M)$.
 - (b) En déduire que M est inversible.
- 2. Montrer que $M^{-1} = \frac{1}{60} \begin{pmatrix} 12 & 6 & 6 \\ -18 & 11 & 1 \\ -18 & 1 & 11 \end{pmatrix}$
- 3. On considère le système suivant (S) : $\begin{cases} 2x-y-z = 4\\ 3x+4y-2z = 11\\ 3x-2y+4z = 11 \end{cases}$

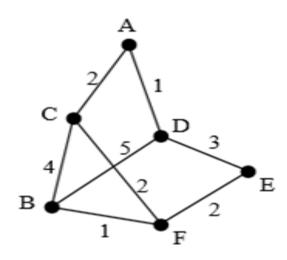
- (a) Donner l'écriture matricielle du système (S).
- (b) Résoudre alors dans \mathbb{R}^3 le système (S).

EXERCICE 3 (7pts)

On considére le graphe (G_1) ci-dessous:



- 1. (a) Déterminer l'ordre du graphe (G₁)
 - (b) Ce graphe est il connexe? justifier
- 2. (a) Donner le dégre du sommet E.
 - (b) (G_1) admet il cycle eulérien? Justifier.
- 3. (a) Donner le dégre de chacun des sommets de (G_1) . (sous forme d'un tableau)
 - (b) Montrer que (G₁) admet au moins une chaine eulérienne.
 - (c) Donner un exemple de chaine eulérienne de (G₁)
- 4. (a) Déterminer un sous graphe complet de (G_1) ayant le plus grand ordre possible.
 - (b) Montrer que $4 \le \gamma(G_1) \le 6$
 - (c) En proposant un coloriage du graphe (G_1) , déterminer $\gamma(G_1)$.
- 5. On considère le graphe pondéré (\mathcal{G}_2) ci dessous .
 - (a) Déterminer le poids de la chaine: A D E F C
 - (b) Trouver la plus courte chaine réliant A et B.



Annexe à rendre avec la copie

