L-S :Matmata^{Nvlle}

A-S:2018 / 2019

Devoir de synthèse N°1

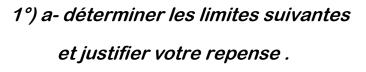
Durée :2h***Mathématiques*** coef :2.5

Prof: D - Ali

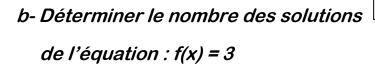
Niveau: 4 eco

Exercice N°1 : 04pts

Dans le plan muni d'un repère orthonormé On a représenter la courbe représentative D'une fonction f note(ζ_f)qui passe par les Points A et B et C d'abscisses respective (-1), 1 et (-2,36).



$$Lim f(x)$$
; $Lim f(x)$; $Lim \frac{f(x)}{x}$



Exercice N°2: 06 pts

Soit f la fonction définie sur]2, $+\infty$ [par $f(x) = \frac{3x-1}{x}$

1°) a- Montrer que f est dérivable sur]2, + ∞ [et pour tout x > 2 f '(x) = $\frac{-5}{(x-2)^2}$

b- Dresser le tableau de variation de f.

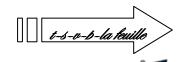
 2°) a- déterminer les asymptotes de la courbe (ζ_f) de f

b – construire la courbe (ζ_f) dans un repère orthonormé (O, i, j)

3°) soit
$$h(x) = f(\sqrt{x})$$

- a) Calculer h'(x) pour tout x > 2
- b) Dresser le tableau de variation de h.

Exercice N°3:06pts



Dans cet exercice les probabilités seront données sous forme fractionnaires .

Lors d'une enquête réalisée auprès d'élèves de classes terminale , on apprend que 60 % des élèves sont des filles . de plus 40 % des filles et 30 % des garçons Sont des fumeurs .

- 1°) on choisit un élève au hasard . on note A l'événement « l'élève choisi fume » et p(A) la probabilité de cet événement . on note F l'événement « l'élève choisi est une fille »
 - a) Déterminer la probabilité pour que cet élève soit un garçon qui fume
 - b) Déterminer la probabilité pour que l'élève choisi soit une fille fumeur .
 - c) Déduire que $p(A) = \frac{9}{25}$
- 2°) L'enquête permet de savoir que : parmi les élèves fumeurs la moitie ont des parents qui fument . parmi les élèves non fumeurs 65 % ont des parents non fumeurs . on note B l'événement « l'élève choisi a des parents non fumeurs »
 - a) Traduire les donnes par un arbre de probabilité
 - b) Calculer p(A∩B)
 - c) Calculer les probabilités $p(\bar{A})$ et p(A/B) . en déduire $p(\bar{A} \cap B)$

Exercice N°4: 04 pts

Soit (U_n) la suite réelle définie sur IN par : $U_n = \frac{1}{2^n}$

- 1°) a) Calculer U_0 ; U_1 et U_2
 - b) Montrer que (U_n) est géométrique de raison $\frac{1}{2}$
 - c) Calculer sa limite .
- 2°) soit (V_n) la suite définie par V_0 = 2 et pour tout $n \in IN$; $V_{n+1} = \frac{1}{2} V_n + \frac{1}{2}$.
 - a) Montrer par récurrence que pour tout $n \in IN$ on a : $V_n = 1 + U_n$
 - b) Déduire la limite de la suite (V_n).

Bon Travail

