

Tableau de déclaration des objets: T.D.O. Locaux :

procedure tri shaker(var t:tab; n:integer);

Objet	Type/Nature
Echange	Booléen
m, i,j	Entier

En Pascal:

```
var i, j, m: integer; echange :boolean ;
begin
   m:=1;
 repeat
       echange :=false ;
    for i := m \text{ to } n-1 \text{ do}
         begin
          if (T[i] > T[i+1]) then
                                    begin
                        Permute(T[i], T[i+1]);
                               Echange :=true;
                                    End :
        End ;
                      n := n-1;
   for j := n \text{ to } m+1 \text{ do}
        begin
          if (T[j] < T[j-1]) then
                                   begin
                        Permute(T[j], T[j-1]);
                               Echange :=true;
                                   End :
        End;
                      m := m+1;
  Until (echange = false) or (n<=m) ;</pre>
End ;
```

Tri à Bulles bidirectionnel(cocktail shaker)

Le tri bidirectionnel ou cocktail shaker est une variante de l'algorithme du tri à bulles.

Il consiste à parcourir le tableau de gauche à droite , puis de droite à gauche, le changement de direction ayant lieu chaque fois que l'une des extrémités est atteinte.(les plus petits éléments du tableau descendent au même rythme que remonte les plus grands éléments.

Tri par insertion (utilisant la dichotomie):

Optimisation de la recherche du point d'insertion

La recherche du point d'insertion k peut se faire séquentiellement ; mais on peut employer une recherche dichotomique, qui est plus efficace.

- → La procédure tri insertion appelle la procédure inserer_trie(T,i) pour insérer l'élément T[i] dans sa position dans la partie triée entre 1 et i-1.
- →Dans la procédure insere trie :
 - On met l'élément à insérer dans x puis on recherche la position d'insertion (k) de x dans le tableau T entre la position 1 et i par la fonction posit_ins
 - Puis on décale les valeurs de la position k
 à i-1 d'un pas à droite (for j := i downto k+1 do T[j] := T[j-1];)
 - En fin on insère x dans sa position (T[k] :=x)
- →Dans la procédure posit_ins on va trouver la position d'insertion de x dans T entre la position 1 et i:
 - On commence par traiter le cas des extrémités (1 et i)
 - Puis on initialise les deux bornes inf et sup respectivement par 2 et i-1 (par ce qu'on a déjà traité le cas des extrémités)
 - Et on recherche la position de m tq T[m-1]<=x<T[m] par une variante de dichotomie sans utiliser une variable booléenne.

```
FUNCTION posit ins(var T : Tab;i:integer;
                      x : type element) : integer;
    VAR inf, sup, m : integer;
    REGIN
    if x < T[1] then posit ins := 1
    else if T[i-1] \le x then posit ins := i
    else
begin
  inf := 2; sup := i-1;
       while inf < sup do
           begin
           m := (inf + sup) div 2;
         if T[m] \ll x
                           0)Def proc insere(var t:tab, i:entier, x:entier)
       then inf := m+1
                             tant que (t[i] \le x) et (i \le n) faire
       else sup := m;
                             i ← i+1
           end;
                             fin tanque
                           si t[i] \ge x alors pour j de n+1 à i+1 faire
  posit ins := sup;
                                       t[j] \leftarrow T[j-1]
end:
                                       finPour
                           finsi
    END;
                             T[i]←x
                           2)Fin insère
PROCEDURE inserer trie(var T : Tab; i:integer);
    VAR j, k : integer;
    x : type element;
    BEGIN
    { élément à insérer }
    x := T[i];
    { recherche position d'insertion de x }
    k := posit ins (T, i, x);
    { décalage : en descendant }
    for j := i downto k+1 do T[j] := T[j-1];
    { insertion }
    T[k] := x;
    END;
PROCEDURE tri insertion(var T : Tab;n:integer);
    VAR i : integer;
    BEGIN
    for i := 2 to n do
    inserer trie (T, i);
    END;
```