L.TATAOUINE	Mathématiques	KHEBIR R
5/11/2018	Devoir de Controle №1	4 MATHS1

EXERCICE 1(4points)

Dans la figure ci- contre C_f est la représentative d'une fonction f définie sur]-3,2]

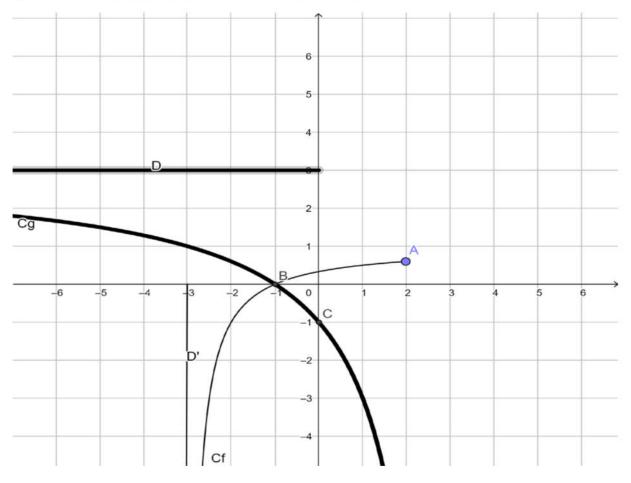
passant par $A(2,\frac{1}{2})$ et B(-1,0) admet une asymptote verticale d'équation x=-3

et C_g la courbe représentative d'une fonction g définie sur]- ∞ ,2] passant par B et C(0, -1)

et la droite d'équation y =3 est une asymptote à C_g au voisinage de - ∞

Soit h la fonction définie sur [-3,2] par
$$h(x) = \begin{cases} gof(x) & si-3 < x \le 2 \\ 3 & si & x = -3 \end{cases}$$

- 1/ Déterminer h(-1) et $\lim_{x\to -3} h(x)$
- 2/Montrer que h est continue sur [-3,2]
- 3/ Montrer que h est décroissante sur]-3,2]
- 4/Déterminer le point d'intersection de Chavec l'axedes abscisses



EXERCICE 2(8 points)

Pour tout entier $n \ge 1$, la fonction f_n définie sur $[0,+\infty[\operatorname{par} f_n(x) = x + n\sqrt{\frac{x}{x+1}}]$

1/ a-Déterminer
$$\lim_{x\to +\infty} f_1(x)$$
 , $\lim_{x\to +\infty} \frac{f_1(x)}{\sqrt{x}}$

b-Montrer que
$$\lim_{x\to 0^+} \frac{f_1(x)}{\sqrt{x}} = 1$$

2/ Soit g la fonction définie sur
$$[0,+\infty[$$
 par $g(x)=\begin{cases} \frac{\sin(f_1(x))}{\sqrt{x}} & \text{si } x>0\\ 1 & \text{si } x=0 \end{cases}$

- a- Montrer que g est continue a droite en 0
- b- Déterminer limite de g en +∞

3/a- Montrer que pour tout entier n≥1, la fonction f_n est croissante sur $[0,+\infty[$

b-déduire que l'équation $f_n(x) = 1$ admet unique solution a_n , dans]0,1[

4/a- Montrer que pour tout entier n≥1,, $f_{n+1}(a_n) \ge 1$

b- En déduire que la suite a_n estdécroissante puis montrer alors que la suite est convergente

EXERCICE 2(8points)

Le plan complexe est rapporté à un repère orthonormé (0, OI, OJ)

On désigna par B , A , M(M distinct de A)et M' les points d'affixes respectives a ,1 , z et $z' = \frac{z-a}{z-1}$

1/On pose **a** = **1** +
$$e^{i2\theta}$$

a-Montrer que M et M' sont confondus **si et seulement si**
$$z^2$$
 - $2z$ +1 + $e^{i2\theta}$ = 0 b-Résoudre dans C l'équation z^2 - $2z$ +1 + $e^{i2\theta}$ = 0

2/ **Dans la suite de l'exercice On pose a = 2** et Soit $\alpha \neq 2k\pi$ ou k est entier

a-Montrer que pour tout
$$\propto \neq 2k\pi$$
 ou k est entier $\frac{1}{1-e^{i\alpha}} = \frac{1}{2} + i\frac{1}{2}cotan(\frac{\alpha}{2})$ b-Déduire que $z' = e^{i\alpha}$ équivaut à $z = \frac{3}{2} + \frac{1}{2}icotan(\frac{\alpha}{2})$

3/ a-Déterminer et construire l'ensemble Δ des points M d'affixe z du plan tels que $\left|\frac{z-2}{Z-1}\right|=1$

b-Déterminer et construire l'ensemble Γ des points M d'affixe z du plan/ $arg\left(\frac{z-2}{z-1}\right) \equiv \frac{\pi}{6} [2\pi]$

4/Soit P le point d'intersection de Δ et Γ .On note p l'affixe du point P

a-Construire le point P

b-Vérifier que $\frac{p-2}{p-1}=e^{i\frac{\pi}{6}}$ déduire l'affixe ${\bf p}$ du point P

L.TATAOUINE	Mathématiques	KHEBIR R
5/11/2018	Devoir de Controle №1	4 MATHS1