LYCEE /B/HGHZEZ/

DEVOIR DE SYNTHESE NI

MATHEMATIQUES (3 h)

4MATH

EXERCICE I(4 points)

Dans le plan compléxe P rapporté à un repère orthonormé (O,\vec{u},\vec{v}) , on considère les points A et B d'affixes respectives w et 1 ou w est un nombre complèxe donné différent de 1. Soit f'l'application de P\B dans P, qui à tout point M d'affixe z , associe le point M' d'affixe z' telle que : $z' = \frac{z-w}{z}$

1/Montrer que les affixes des points invariants par f sont solutions de l'équation $(E) z^2 - 2z + w = 0$

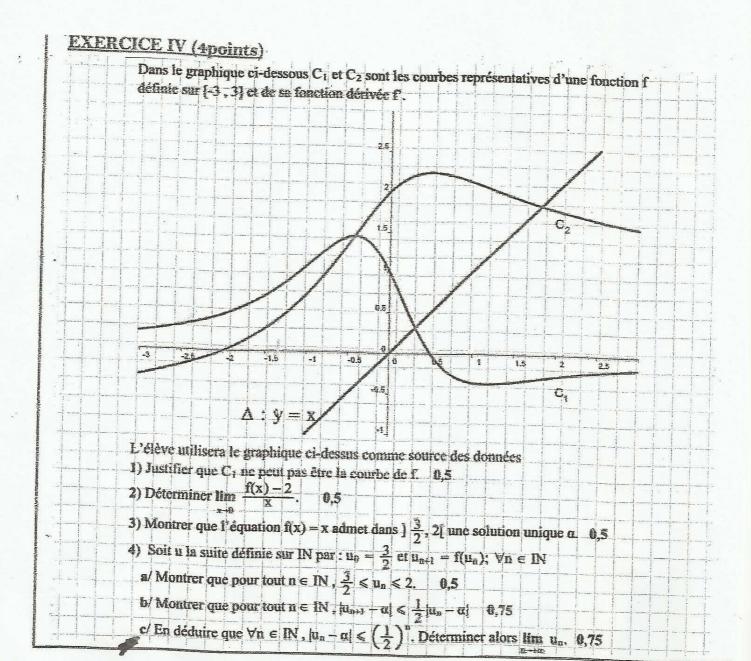
- 2/3) On suppose que $w = 1 + e^{i\theta}$ ou $\theta \in]\frac{\pi}{2}, \frac{3\pi}{2}[$. Résondre l'équation (E)
- b) Mettre sous la forme trigonométrique chacune des solutions de (E).
- 3/Dans cette question on suppose que w=-1 . Soit M un point de P\ B et M' son image par f
 - a) Montrer que $(\vec{u}, \overrightarrow{BM}) + (\vec{u}, \overrightarrow{BM'}) \equiv 0 \pmod{2\pi}$. En déduire que la demi-droite [BA) est une bissectrice de l'angle $(\overrightarrow{BM}, \overrightarrow{BM'})$
 - b) Montrer que z' est imaginaire pur si et seulement si l z l = 1
 - c) Endéduire une construction du point M' image d'un point M du cercle trigonométrique privé du point B

EXERCICE II (5points)

Dans le plan orienté, on considère un triangle ABC rectangle en A tel que $(\overrightarrow{CA}, \overrightarrow{CB}) = \frac{\pi}{3} (2\pi)$ et on désigne par O le milieu du segment [BC] (Voir figure donnée en annexe, que l'on complètera au fur et à mesure)

- 1. Montrer que le triangle OCA est équilatéral.
- 2. (a) Montrer qu'il existe un unique déplacement f qui envoie O sur A et B sur C.
 - (b) Montrer que f est une rotation dont on précisera l'angle. Construire son centre l'aur la figure donnée en anneve.
 - (c) En calculant $(\overline{IB}, \overline{IO})$ et $(\overline{IO}, \overline{IA})$, montrer que l'appartient au segment [AB]
- 3. Soit R la rotation de centre C et d'angle 3.
 - (a) Déterminer la nature et les éléments caractéristiques de fost.
 - (b) Soit C'l'image de C par J.
 - Déterminer (foR)(C). En déduire que A est le milieu du segment [CC']
- 4. (a) Montrer qu'il existe un unique antidéplacement g tel que g(O) = A et g(B) = C.
 - (b) Montrer que g est une symétrie glissante dont on précisera l'axe et le vecteur.
 - (c) Montrer que g(C) = C'

youssefboulila



EXERCICEIII (7 points)

- 1°/ Soit f la fonction définie sur \mathbb{R} + par $f(t) = \frac{1}{\sqrt{t+1}}$ a) Montrer que f est dérivable sur \mathbb{R} + et établir que pour tout $t \ge 0$ on a : $-\frac{1}{2} \le f'(t) \le 0$
- b) Endéduire à l'aide des înégalités des accroissements fins que pour tout $x \ge 0$, $x \frac{x^2}{2} \le \frac{x}{\sqrt{x+1}} \le x$
 - c) Montrer que la fonction U définie sur [0, 1] par $U(x) = x \frac{x^2}{2}$ réalise une
- sur $[0,\frac{1}{2}]$ et expliciter $U^{-1}(x)$ pour tout bijection de [0.1]
 - 2°/ Soit y la fonction définie sur \mathbb{K} par $g(x) = \frac{x}{\sqrt{x+1}}$ et C_g sa courbe
- représentative dans un repère orthonormé (o. i. j) a) Interpréter graphiquement la double inégalité démontrée en 1°/b).
- b) Montrer que 4 réalise une bijection de #+ sur #+. On note 4 la fonction
 - c) Tracer dans le même repère les courbes C_g , $C_{g^{-1}}$, C_U et $C_{U^{-1}}$.
- 3°/Soit (U_n) la suite définie sur \mathbb{N} par $U_0 = \frac{1}{\sqrt{2}}$ et $U_{n+1} = g^{-1}(U_n)$, $n \ge 0$.
- a) Montrer que (U_n) est croissante.
- o(6) b) Montrer que (U_n) est non majorée.
- 015 c) En déduire nim Un
- O_1 $\bigcup_{x \leq y^{-1}(x) \leq 1 \sqrt{1 2x}}^{4^{\circ}/a}$ En utilisant la question $2^{\circ}/c$), justifier que pour tout
 - $V_n = ny^{-1} \left(\frac{1}{n} \right)$ b) En déduire la limite de la suite (Vn) définie par
- i) En utilisant 4/a)
 - \mathcal{O} | \mathcal{U} ii) En utilisant la dérivabilité de g^{-1} en 0
 - 5/ On pose pour tout x de $\left[0, \frac{\pi}{2}\right]$ h(x) = f(1 2cos 2x)
 - /a) Montrer que h réalise une bijection de $\left[0,\frac{\pi}{2}\right]$ sur K à préciser $O(\mathcal{V})$ b) Etudier la dérivabilité de h^{-1} sur K et calculer sa dérivée