L. Regueb	Mathématiques	Classe: 4èmeM
Prof : Salhi Noureddine	Devoir de Synthèse №1	Le : 06/12/2010 Durée : 3h

Exercice1(5pts)

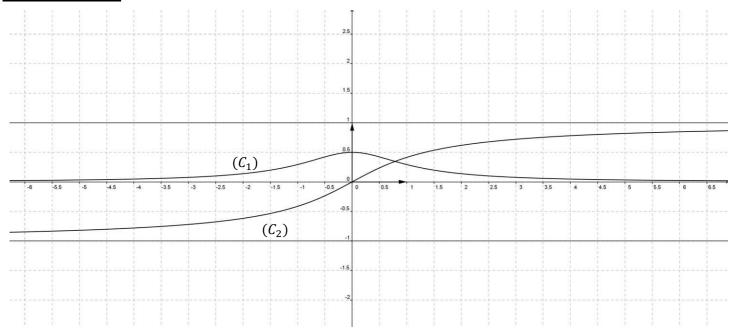
Dans le plan complexe rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On considère l'application f du plan dans lui-même qui, à tout point M d'affixe z, associe le point M' d'affixe z' telle que : $z' = z^2 - 4z$.

- 1) Soient A et B les points d'affixes $z_A=1-i$ et $z_B=3+i$.
 - a) Calculer les affixes des points A' et B' images des points A et B par f.
 - b) On suppose que deux points ont la même image par f, démontrer qu'ils sont confondus ou que l'un est l'image de l'autre par une symétrie centrale que l'on précisera .
- 2) Soit I le point d'affixe -3.
- a) Démontrer que OMIM' est un parallélogramme si et seulement si $z^2 3z + 3 = 0$.
- b) Résoudre l'équation $z^2 3z + 3 = 0$.
- 3)a) Exprimer (z'+4) en fonction de (z-2). En déduire une relation entre |z'+4| et |z-2| puis entre (z'+4) et (z-2).
 - b) On considère les points J et K d'affixes respectives $z_J=2$ et $z_K=-4$.

 Démontrer que tous les points M du cercle (Γ) de centre J et de rayon 2 ont leur image M' sur un même cercle que l'on déterminera.
- c) Soit E le point d'affixe $z_E = -4 3i$.

Donner la forme trigonométrique de $(z_E + 4)$ et à l'aide du 3)a) démontrer qu'il existe deux points dont l'image par f est le point E. Préciser sous forme algébrique l'affixe de ces deux points.

Exercice2(6pts)



Dans la figure ci-dessus on a représenté la courbe d'une fonction f dérivable sur $\mathbb R$ et la courbe de sa fonction dérivée f'.

- * La fonction f' est dérivable sur \mathbb{R} .
- * L'axe (Ox) est une asymptote à (C_1) aux voisinages de $+\infty$ et $-\infty$.
- * Les droites d'équations respectives y = 1 et y = -1 sont des asymptotes à (C_2) .
- 1) justifier que (C_2) est la courbe représentative de f.
- 2) Dresser les tableaux des variations de f et f'.
- 3) Ecrire l'équation de la tangente (T) à (C_2) au point d'abscisse 0.
- 4) On pose $g(x) = f(x) \frac{1}{2}x$, $x \in \mathbb{R}$.
 - a) Etudier les variations de g et dresser son tableau de variation.
 - b) En déduire le signe de g, puis déterminer les positions relatives de (C_2) et (T).
 - c) Montrer que le point O(0,0) est un point d'inflexion de (\mathcal{C}_2) .
- 5) montrer que pour tous réels a et b , $|f(b) f(a)| \le \frac{1}{2}|b a|$.
- 6) Soit la suite (u_n) définie sur $\mathbb N$ par : u_0 = 1 et u_{n+1} = $f(u_n)$, $n \in \mathbb N$.
 - a) Montrer que pour tout n $\in \mathbb{N}$, $0 \le u_n \le 1$
 - b) En utilisant les inégalités des accroissements finis à f , montrer que pour tout $n \in \mathbb{N}$, $0 \le u_{n+1} \le \frac{1}{2} u_n$.

Prouver alors que la suite (u_n) est décroissante sur $\mathbb N$ et convergente.

c) En déduire que pour tout $n \in \mathbb{N}$, $0 \le u_n \le \frac{1}{2^n}$. Déduire la limite de (u_n) .

Exercice3(5pts)

Soit AFED un carré de coté 4 cm tel que $\left(\widehat{AF},\widehat{AD}\right) \equiv \frac{\pi}{2} \left[2\pi\right]$ et soit O son centre .On désigne par B et O_1 les symétriques respectifs de A et O par rapport à la droite (EF).

- 1)a) Soit r la rotation définie par r(F) = E et r(E) = D. Préciser l'angle et le centre de r.
 - b) Soit $= r \circ S_{(OO_1)}$. Montrer que f est la symétrie orthogonale d'axe (OE).
- 2) Soit $r'=t_{(\overrightarrow{OO_1})}\circ r^{-1}\;$ ou r^{-1} désigne la rotation réciproque de r.
 - a) Montrer que r' est une rotation dont on précisera l'angle.
 - b) Déterminer r'(0) . En déduire que F est le centre de r'.
- 3) On désigne par g l'antidéplacement défini par g(D) = F et g(O) = O_1 .
- a) Montrer que g est une symétrie glissante et déterminer sa forme réduite.
- b) Soit M un point du plan, montrer que :

$$[g(M) = r'(M)]$$
 si et seulement si $[f(M) = M]$.

c) En déduire l'ensemble des points M tels que g(M) = r'(M).

Exercice4(4pts)

On considère la fonction : $f x \mapsto \sqrt{\frac{1-x}{1+x}}$.

- 1) Vérifier que l'ensemble de définition de f est]-1, 1].
- 2)a) Montrer que f est dérivable sur]-1, 1[et que pour tout x de]-1, 1[on a : $f'(x) = \frac{-1}{(1+x)\sqrt{1-x^2}}$.
 - b) En déduire que f admet une fonction réciproque f^{-1} définie sur un intervalle J qu'on déterminera.
- c) Déterminer l'expression de $f^{-1}(x)$ pour x réel de J.
- 3) Pour tout x de $\left]0, \frac{\pi}{4}\right]$ on pose $g(x) = f(tan^2(x))$.
- a) Vérifier que $(x) = \sqrt{\cos(2x)}$.
- b) Montrer que g réalise une bijection de $\left]0,\frac{\pi}{4}\right]$ sur un intervalle K qu'on précisera.
- c) Montrer que g^{-1} est dérivable sur]0 , 1[et que pour tout x de]0 , 1[on a : $(g^{-1})'(x) = -\frac{x}{\sqrt{1-x^4}}$.

