Le 09-12-214

Durée 3 h

Pr : Marzouk Ali

Exercice n°1: (3points)

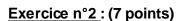
La figure ci-contre donne les courbes de f et g définies par :

$$f(x) = (x^2 - 2x)\sqrt{x+1}$$
 et $g(x) = 3\sqrt{x+1}$

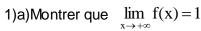
- 1)Déterminer graphiquement puis par calcul les positions relatives de C_f et C_g
- 2) Justifier qu'au point d'abscisse -1, C_f et C_g admettent une tangente commune.
- 3) M et N deux points appartiennent respectivement à C_f et C_g de même abscisse x de [-1; 3].

On pose $\phi(x) = MN$

Déterminer la valeur de x pour laquelle $\phi(x)$ est maximale.



Soit la fonction f définie sur]1,+ ∞ [par $f(x) = \frac{x}{\sqrt{x^2-1}}$



- b) Montrer que pour tout x appartient à]1,+ ∞ [on a; f'(x) = $\frac{-1}{(\sqrt{x^2-1})^3}$
- c)Dresser le tableau de variation de f et tracer la courbe (C)de f dans un repère orthonormé
- 2)a)Montrer que f réalise une bijection de]1,+∞[sur lui-même.
- b) Soit x un réel de $]1,+\infty[$, calculer fof(x) et en déduire $f^{-1}(x)$
- c)En déduire que $\,S_D\,$, où D : $\,y=x\,$ laisse globalement invariant $\,$ la courbe (C)
- 3)Soit n un entier naturel non nul,
- a)Montrer que l'équation $f(x) = x^n$ admet une seule solution a_n et que $a_n \in]1,2[$
- b)Montrer que $\,f(a_{_{n}}) \leq a_{_{n}}^{^{n+1}}\,$ en déduire $\,$ que $\,a_{_{n}} \geq a_{_{n+1}}$
- c)Montrer que la suite (a_n) est convergente .On note l sa limite.
- 4)a)Montrer que pour tout entier naturel p on a : $l \le a_p$
- b) Montrer que $(l \succ 1) \Rightarrow \lim_{n \to +\infty} a_n^n = f(l)$
- c)En déduire que l=1
- 5) Soit la fonction φ définie sur $\left]0, \frac{\Pi}{2}\right]$ par $\begin{cases} \varphi(x) = f\left(\frac{1}{\cos x}\right) & \text{si } x \in \left]0, \frac{\Pi}{2}\right[\\ \varphi\left(\frac{\Pi}{2}\right) = 1 \end{cases}$
- a)Montrer que φ est continue à gauche en $\frac{\Pi}{2}$
- b) Montrer que pour tout x de $\left]0, \frac{\Pi}{2}\right]$, $\phi(x) = \frac{1}{sinx}$
- c)Montrer que $\,\phi$ réalise une bijection de $\,\left]0,\frac{\Pi}{2}\,\right]$ sur $\left[1,+\infty\right[$
- d)Montrer que $\,\phi^{\scriptscriptstyle -1}\,$ est dérivable sur]1,+ $^\infty$ [et calculer $\left(\phi^{\scriptscriptstyle -1}\right)$ '(x)

Exercice n°3: (5 points)

Dans le plan orienté, on considère un carré ABCD de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2}(2\pi)$

E = C * D, F = C * B et I le point du plan tel que CIA soit un triangle équilatéral direct

- 1) a)Vérifier que $(\widehat{\overrightarrow{AD}, \overrightarrow{AI}}) \equiv \frac{\pi}{12} (2\pi)$
- b)Montrer que : $r_{(A, \frac{\pi}{4})} = S_{(AI)} \circ S_{(AD)}$
- c)Déterminer la droite Δ telle que $r_{(I, \frac{\pi}{a})} = S_{\Delta}$ o $S_{(IA)}$
- d) Déduire la nature et les éléments caractéristiques de $h = r_{\left(I, \frac{\pi}{g}\right)} or_{\left(A, \frac{\pi}{g}\right)}$
- 2)a)Montrer qu'il existe un unique déplacement f tel que f(C) = B et f(E) = F
- b)Montrer que f est la rotation de centre O et d'angle $-\frac{\pi}{2}$.
- c)Montrer que f(D) = C
- 3) Soit g le antidéplacement tel que g(D) = C et g(C) = B
- a) Montrer que g est une symétrie glissante.
- b) On désigne par Δ et \vec{u} l'axe et le vecteur de g.

Montrer que g o g = $t_{2\vec{u}}$ et déterminer \vec{u} et Δ

Exercice n°4: (5 points)

Soit l'équation (E): z^2 - $2(m+2i)z + 2m^2 + 4im - 4= 0$; m est un paramètre complexe.

- 1) a) Résoudre dans C, l'équation (E).
- b) Déterminer m pour que 2i soit solution de (E); préciser alors l'autre solution.
- 2) Dans le plan complexe rapporté à un repère orthonormé direct $\left(o,\vec{u},\vec{v}\right)$,

On considère les point M, M_1 et M_2 d'affixes respectives: m, z_1 = (1+ i)m+ 2i et z_2 = (1- i)m + 2i .

- a) Montrer que : $z_2 = -iz_1 2 + 2i$.
- b) En déduire que M_2 est l'image de M_1 par une rotation dont on précisera le centre I et l'angle α .
- c)On suppose que m est non nul, et on note J le milieu de $[M_1M_2]$.

Montrer que J est l'image de M par une translation que l'on précisera.

Montrer que (IJ) et (M_1M_2) sont perpendiculaires.

3) Soit g l'application du plan dans lui-même qui à tout point M(z) on associe le point M'(z')

tel que :
$$z' = i\bar{z} - 2 - 2i$$

- a)Montrer que g est un antidéplacement
- b) Montrer que l'écriture complexe associée à l'application gog est z''=z-4-4i
- c)Caractériser alors g.