DEVOIR DE SYNTHESE N°1

2014/2015

SAIDANI MOEZ BAC MATHS

EXERCICE N°1 (5 points)

- 1. Résoudre dans $\mathbb C$ l'équation $(E_{\alpha}): z^2 (1+i)e^{i\alpha}z + ie^{i2\alpha} = 0$
- 2. Dans le plan complexes muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$,on considère les points M_1 et M_2 d'affixes respectives z_1 et z_2 avec $z_1 = e^{i\alpha}$ et $z_2 = ie^{i\alpha}$
 - (a) Montrer que le triangle OM_1M_2 est rectangle et isocèle en O
 - (b) Soit I le milieu du segment $[M_1M_2]$.
 - i. Montrer que, lorsque α varie sur $[0,2\pi]$ le point I varie sur le cerc le ξ de centre O et de rayon $\frac{\sqrt{2}}{2}$
 - ii. Montrer que la droite (M_1M_2) est tangente à ξ
 - (c) On suppose que $\alpha \in [0, \pi]$
 - i. Montrer que $\left(\overrightarrow{u}, \widehat{M_1 M_2}\right) \equiv \alpha + \frac{3\pi}{4} \left[2\pi\right]$
 - ii. En déduire la valeur de α pour laquelle la droite (M_1M_2) est parallèle à l'axe (O, \overrightarrow{v}) .

le plan est orienté dans le sens direct; soit ABCD un carré de centre O et telque $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$

- 1. Soit f une isométrie qui laisse globalement invariant le triangle ABD.
 - (a) Montrer que f([BD]) = [BD].
 - (b) Prouver alors que f(O) = O et que f(A) = A.
 - (c) En déduire toute les isométries qui laissent globalement invariant le triangle ABD.
- 2. Soit g une isométrie qui transforme le triangle ABD en le triangle BCD.
 - (a) Montrer que l'application $S_O \circ g$ est une isométrie qui laisse globalement invariant le triangle ABD.
 - (b) En déduire toutes les isométries qui transforment le triangle ABD en le triangle BCD.
- 3. On suppose que AB=1.le plan étant muni d'un repère orthonormé $\left(A,\overrightarrow{AB},\overrightarrow{AD}\right)$.
 - (a) Déterminer les affixes de chacun des points A, B, C, D et O.
 - (b) Soit h l'application du plan dans lui-même qui à tout point M(z) associe le point M'(z') tel que $z' = -\overline{z} + 1 + i$.
 - Montrer que h est une isométrie sans point invariant.
 - (c) Déterminer h(A) et h(B) et déduire la nature de h.

EXERCICE N°3

..(7points)

- 1. On considère la fonction f définie sur $[0, +\infty[$ par: $f(x) = \frac{2\sqrt{x}}{1+x}$.
 - (a) Etudier la dérivabilité de f en 0.et donner une interprétation géométrique.
 - (b) Etudier les variations de f et dresser le tableau de variation .
 - (c) Montrer que la restriction de f à l'intervalle $[1, +\infty[$ et une bijection de $[1, +\infty[$ sur un intervalle J que l'on déterminera.

- (d) Soit $g = f_{|[1,+\infty[}$
 - i. Représenter la courbe de g dans un repère orthonormé.
 - ii. Montrer que $g^{-1}(x) = \frac{1}{x^2} \left(2\sqrt{1-x^2} x^2 + 2 \right)$
 - iii. Répresenter la courbe de g^{-1} dans le même repère.
- 2. Soit la fonction $:x \xrightarrow{\tan} \tan x$.
 - (a) Montrer que la fonction tan est une bijection de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ sur } \mathbb{R}.$
 - (b) On note h la réciproque de tan ,montrer que h est dérivable sur \mathbb{R} et que $h'(x) = \frac{1}{1+x^2}$.
- 3. On considère la fonction φ définie sur $[1, +\infty[$ par $\varphi(x) = 2h(\frac{2\sqrt{x}}{1+x})$
 - (a) Montrer que φ est bien définie
 - (b) Montrer que φ est décroissante en utilisant la composition des fonctions.
 - (c) Vérifier que $\varphi'(x) = -\frac{1}{\sqrt{x}} \frac{2(x-1)}{x^2 + 6x + 1}$
 - (d) Montrer que $\varphi(2) > \frac{\pi}{3}$ (sans utiliser la calculatrice)
 - (e) Montrer que l'équation $\varphi(x) = x$ possède une unique solution $\alpha \in]1,2[$
 - (f) En utilisant la question 1)d)ii)donner l'expresion de $\varphi^{-1}(x)$ (facultative).

copie à rendre

nom et prénom......classe......

CHOISIR LA BONNE REPONSE

Si f une fonction dérivable en 0 telles que f(0) = 0 et f'(0) = 1 alors $\lim_{x \to 0} \frac{f(2\sin x)}{x} =$ a) 0
b) 1
c) 2

ABCD est un carré direct de centre O et I le milieu de [AB] alors l'isométrie $S_{(AD)} \circ S_{(OI)} \circ S_{(BC)}$ est: a) La symétrie orthogonale d'axe (OI) b) La symétrie orthogonale d'axe (AD) c) $t_{\overrightarrow{BA}} \circ S_{(AD)}$

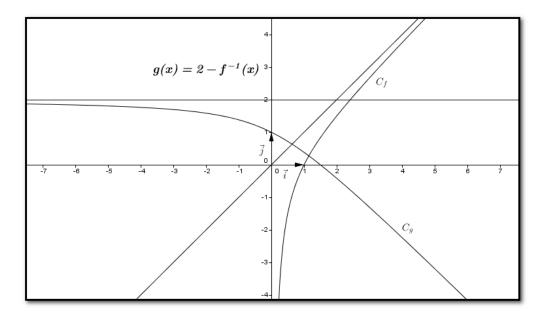
Soit f une fonction dérivable sur \mathbb{R} telle que pour toute $x \in \mathbb{R}$. $|f'(x)| \leq \frac{1}{2}$ alors:

a)
$$|f(-5) - f(3)| \le 2$$

b)
$$|f(-5) - f(3)| \le 1$$

c)
$$|f(-5) - f(3)| \le 4$$

Soit f une bijection de $]0,+\infty[$ sur $\mathbb{R}.g$ la fonction définie par $g(x)=2-f^{-1}(x)$ dont les courbes sont représentées ci-dessous :



alors C_g est l'image de C_f par

a) une translation

b) une rotation

c) une symétrie orthogonale

Préciser les éléments caractéristiques (facultative)