ECOLES PRIVEES ERRAJA

مدارس الرجاء الحرة

7C DEVOIR DE MATHS 12/04/2011 DUREE 4H

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (3 POINTS)

Soit ABCD un quadrilatère convexe de diagonales [AC] et [BD] se coupant en I. Soit P,Q,R et S les projetés orthogonaux respectifs de I sur (AB), (BC), (CD), (DA).

- 1) Construire la configuration précédente.
- 2) Montrer que les points A,P,I et S sont cocycliques. Citer trois autres cocyclicités similaires.
- 3) Montrer que: a) $(PS,PQ) = (AD,AC) + (BD,BC) [\pi]$ b) $(RQ,RS) = (CB,CA) + (DB,DA) [\pi]$.
- $(PS,PQ)+(RQ,RS)=2(DB,CA) [\pi]$ 4) Montrer que :
- 5) En déduire que les points P.O.R et S sont cocycliques si et seulement si les diagonales (AC) et [BD] sont perpendiculaires. Illustrer cette situation sur une figure.

EXERCICE 2 (4 POINTS)

On muni le plan complexe d'un repère orthonormal direct (O, \vec{u}, \vec{v}) . Soit f_a l'application qui associe au

point M d'affixe z le point M' d'affixe z' telle que : $z' = (\frac{1}{2} + ai)z + \frac{3}{2} - 3ai$,

1) Reconnaître l'application f_e et la caractériser pour chacune des valeurs suivantes du nombre

complexe a:

- b) a = i c) $a = \frac{\sqrt{3}}{2}$
- 2) Dans la suite de l'exercice on suppose que $a \in \mathbb{R}$ et on note $\theta = \arg(\frac{1}{2} + ai)$. On note $M_0 = O(0,0)$ et
- $\Omega(3;0)$. Pour tout entier naturel $n \in \mathbb{N}$ on pose $M_{n+1} = f_a(M_n)$. Soit z_n l'affixe du point M_n .
- a) Montrer que f_a est une similitude directe de rapport $\lambda \neq \frac{1}{2\cos\theta}$.
- b) Calculer et écrire sous forme algébrique, les nombres z_1 et z_2 en fonction de a.
- c) Montrer que pour tout $n \in \mathbb{N}$ on $a : z_n = 3 3 \left(\frac{1}{2 \cos \theta} \right)^n e^{in\theta}$.

EXERCICE 3 (4 POINTS)

Dans le plan, on considère un rectangle ABCD tel que AB = 2AD = 2a . Soit le point G tel que $G = bar\{(A,-2),(B,4),(C,3),(D,3)\}.$

- 1.a) Montrer que $G = bar\{(B,2),(C,5),(D,1)\}.$
- b) Déterminer des réels a ;b et c tels que $G = bar\{(A,a),(C,c),(D,d)\}$
- c) On note I le milieu du segment [AB]. Montrer que $\overrightarrow{GC} = \overrightarrow{IC}$ et placer G sur la figure.
- 2) Déterminer ; dans chacun des cas suivants ; l'ensemble des points M du plan :
 - a) $M \in \Gamma_1 \Leftrightarrow -2\overline{MA} + 4\overline{MB} + 3\overline{MC} + 3\overline{MD} = 4\overline{GA} + 4\overline{GB}$
 - b) $M \in \Gamma_2 \Leftrightarrow |2\overline{MB} + 5\overline{MC} + \overline{MD}| = |\overline{MA} + \overline{MB}|$

E.P.ERRAJA 7C DEVOIR DE MATHS 1/2 **DUREE 4H** 12/04/2011 HORMA

d)
$$M \in \Gamma_4 \Leftrightarrow 2MB^2 - 3MC^2 + MD^2 = 2a^2$$

e)
$$M \in \Gamma_5 \Leftrightarrow (-2\overrightarrow{MA} + 4\overrightarrow{MB} + 3\overrightarrow{MC} + 3\overrightarrow{MD})(\overrightarrow{MA} + \overrightarrow{MB}) = 0$$

EXERCICE 4 (4 POINTS)

Soit la fonction numérique f définie sur]1,+of par : $f(x) = e^{\frac{1}{\ln x}}$. On pose $F(x) = \int_{0}^{x+1} f(x) dx$ f(t)dt. 1.a)

1.a) Montrer que pour tout x de 1, $+\infty$, on a: $f(x+1) \le F(x) \le f(x)$. En déduire $\lim_{x \to \infty} F(x)$.

b) Montrer que pour tout u de $]0,+\infty[$, on a : $e^{u} \ge u+1$. En déduire que pour tout x de $]1,+\infty[$, on a :

$$F(x)-1 \ge \int_x^{x+1} \frac{1}{\ln t} dt.$$

2.a) Montrer que pour tout u de $[0,+\infty]$, on a : $\ln u \le u - 1$.

b) En déduire que pour tout x de $]1, +\infty[$, on a : $\int_{x}^{x+1} \frac{1}{\ln t} dt \ge \ln\left(\frac{x}{x-1}\right)$.

3.a) Déduire de ce qui précède $\lim F(x)$

b) Dresser le tableau de variation de la fonction F.

c) Tracer l'allure générale de la courbe de F dans un repère orhonormé.

EXERCICE 5 (5 POINTS)

Soit n un entier naturel, $n \ge 1$, f et I deux fonctions définies sur $I = [1, +\infty]$ par :

$$f_n(x) = \frac{1}{n!} \cdot \frac{(\ln x)^n}{x^2}, \quad \text{et} \quad I_n(x) = \int_1^x f_n(t) dt.$$

1) Calculer I(x) pour $x \ge 1$

2.a) Soit k un entier, k≥1. En utilisant une intégration par parties, montrer que :

$$I_{k+1}(x) = I_k(x) - \frac{1}{(k+1)!} \frac{(\ln x)^{k+1}}{x}$$

b) En déduire que pour tout $n \ge 1$ on $a : I_n(x) = 1 - \frac{1}{x} - \frac{\ln x}{x} - \frac{(\ln x)^2}{2! \, x} - \dots - \frac{(\ln x)^{n-1}}{(n-1)! \, x} - \frac{(\ln x)^n}{n! \, x}$

3) Soit un réel $\alpha \ge 1$

E.P.ERRAJA

a) Pour tout $x \ge 1$, calculer f'(x) et étudier les variations de f(x).

b) Vérifier que l'extremum de la fonction f_n sur l'intervalle $f_n = 1 + \infty$ est $f_n = \frac{1}{n!} \left(\frac{n}{2e}\right)^n$.

c) Montrer que $0 \le I_n(\alpha) \le (\alpha - 1)y_n$. En déduire $\lim_{n \to +\infty} I_n(\alpha)$.

4) Pour tout $x \ge 1$ et $n \ge 1$ on pose : $W_n(x) = 1 + \frac{\ln x}{1!} + \frac{(\ln x)^2}{2!} + \dots + \frac{(\ln x)^{n-1}}{(n-1)!} + \frac{(\ln x)^n}{n!}$

a) Exprimer W(x) en fonction de I(x).

7*C*

b) Calculer lim W (α)

c) Déduire de ce qui précède la limite γ de la suite numérique (U) de terme général:

$$U_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(n-1)!} + \frac{1}{n!}$$

2/2

DEVOIR DE MATHS

DUREE 4H

HORMA

12/04/2011