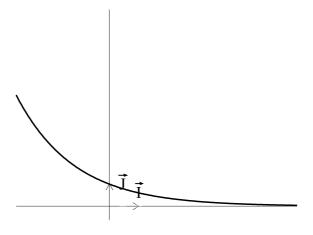
Exercice 1: (3 points)

Pour chacune des questions suivantes, une et une seule des trois propositions est exacte. (<u>Aucune justification n'est demandée</u>)

- 1. $\lim_{x \to +\infty} x^{100} e^x =$
 - A +∞
 - B -∞
 - C 0
- 2. $\lim_{x\to 0} \frac{e^{4x^2}-1}{\sin^2 x} =$
 - A 1
 - B 2
 - C 4
- $3. \qquad \lim_{x \to +\infty} (1 + \frac{1}{x})^x =$
 - A 1
 - Ве
 - C +∞
- 4. $\int_0^{\ln 2} \frac{e^t}{(1+e^t)^2} dt =$
 - $\mathbb{A} \frac{1}{6}$
 - $\mathbb{B} \frac{1}{1+e}$
 - \square $\ln(\frac{3}{2})$

5. Dans la figure ci-contre, Γ est la courbe d'une fonction f définie sur \mathbb{R} par : $f(x) = a^x$ alors $a = a^x$



Exercice 2: (4 points)

Dans le plan muni d'un repère orthonormé direct $(O, \overline{OI}, \overline{OJ})$. On donne les points A , B et C d'affixes respectives 1 + 2i , 5 - 2i et -1 . Soit f l'application du plan dans lui-même qui, à tout point M d'affixe z, associe le point M' d'affixe z' tel que $z' = \frac{1}{2}iz^- - 1 + \frac{1}{2}i$.

- 1. Montrer que f est une similitude indirecte dont on précisera le rapport . Vérifier que le point C est le centre de f et que son axe Δ a pour équation y = x + 1.
- 2. Soit g la similitude indirecte qui transforme O en C et A en B.
 - a. Donner l'écriture complexe de g .
 - b. On pose h = fog. Soit M un point quelconque du plan, d'affixe z, On désigne par M' son image par h et on note z' l'affixe de M'.

Montrer que z' = (1+i)z - 1 puis caractériser h.

- 3. Soit M un point d'affixe z, on note x la partie réelle z et y sa partie imaginaire. On pose M' = h(M).
 - a. Montrer que les vecteurs \overrightarrow{OM} et \overrightarrow{OB} sont orthogonaux si et seulement si : 3x 7y = 5.
 - b. Déterminer alors tous les points M d'affixe z à l'intérieur du cercle de centre O et de rayon 15 tels que les vecteurs \overline{OM} et \overline{OB} soient orthogonaux et $x,y\in\mathbb{Z}$.

Exercice 3: (3 points)

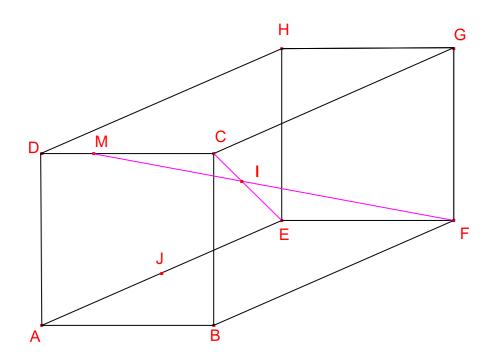
- 1. a. Vérifier que pour tout $n \in \mathbb{Z}$, le couple (14n + 3, 21n + 4) est solution de l'équation (E) : 3x 2y = 1.
 - b. En déduire $(14n+3) \wedge (21n+4)$ pour tout $n \in \mathbb{Z}$
- 2. Pour tout entier naturel n, on pose $d = (2n + 1) \land (21n + 4)$.
 - a. Montrer que d = 1 ou d = 13.
 - b. Montrer que d = 13 si et seulement si n = 6[13]
- 3. Pour tout entier naturel n distinct de 1, on pose $A = 21n^2 17n 4$ et $B = 28n^3 8n^2 17n 3$.
 - a. Montrer que A et B sont divisibles par (n-1).
 - b. Déterminer suivants les valeurs de n, A ∧ B .

Exercice 4: (5 points)

Dans la figure ci-dessous ABCDEFGH un parallélépipède droit tels que $AB = AD = \frac{AE}{2} = 1$.

On désigne par M le point de l'arête [DC] tel que $\overrightarrow{DM} = \frac{1}{3}\overrightarrow{DC}$.

- 1. a. Montrer que les droites (CE) et (FM) se coupent en un point I.
 - b. On désigne par h l'homothétie de centre I qui transforme C en E. Déterminer h((CD)) et h((FM)), en déduire h(M).
 - c. Prouver h est de rapport $-\frac{3}{2}$.
- 2. Soit J le milieu du segment [AE], on munit l'espace du repère orthonormé direct (A, \overline{AB} , \overline{AJ} , \overline{AD})
 - a. Vérifier que le point l a pour coordonnées $(\frac{3}{5}, \frac{4}{5}, \frac{3}{5})$.
 - b. On pose N(1, 0, $\frac{1}{3}$), montrer que h(N) = H.
- 3. a. Déterminer les composantes du vecteur $\overrightarrow{IC} \wedge \overrightarrow{IM}$ en déduire l'aire du triangle IMC.
 - b. Calculer le volume du tétraèdre IMCN. en déduire le volume du tétraèdre IFEH.
- 4. Soit S l'ensemble des points M(x,y,z) tels que : $x^2 + y^2 + z^2 \frac{6}{5}x \frac{4}{5}y \frac{6}{5}z + \frac{18}{25} = 0$
 - a. Montre que S est une sphère dont on précisera le centre et le rayon.
 - b. Vérifier que le point $I \in S$ et que S est tangente au plan (ABC) .
 - c. On pose h(S) = S'. Montrer que S' est tangente au plan (EFH) en un point dont on précisera les coordonnées et qu'elle est extérieurement tangente à la sphère S.



Exercice 5:(5 points)

Soit n un entier naturel non nul et f_n la fonction définie sur [0,1] par : $f_n(x) = \sqrt{x^n} e^{-\frac{x}{2}}$

On désigne par Γ_n la courbe représentative de f_n dans un repère orthonormé (o, \vec{i}, \vec{j}) , et par S_n le solide de révolution obtenu par rotation de Γ_n autour de l'axe (OX). Pour tout entier $n \ge 1$ on désigne par V_n le volume du solide S_n . On a représenté ci-dessous (**Figure1**) les courbes Γ_1 , Γ_2 , Γ_3 , Γ_4 , Γ_5 et Γ_6 ...

- 1. Que peut-on conjecturer quant à la monotonie et la convergence de la suite (V_n) ?
- 2. a. Calculer V₁.
 - b. Montrer que la suite (V_n) est monotone, en déduire qu'elle est convergente.
 - c. Montrer que pour tout entier $n \ge 1$ $V_{n+1} = -\frac{\pi}{e} + (n+1)V_n$.
 - d. En déduire que pour tout entier $n \ge 1$ $\frac{\pi}{e(n+1)} \le V_n \le \frac{\pi}{en}$. Déterminer alors $\lim_{n \to +\infty} V_n$.
- 3. Pour tout entier $n \ge 1$ on pose $U_n = \frac{V_n}{n!}$.
 - a. Montrer que pour tout entier $n \ge 1$ $U_{n+1} = -\frac{\pi}{e(n+1)!} + U_n$.
 - b. Montrer que pour tout entier $n \ge 1$ $V_n = \pi n! (1 \frac{1}{e} \sum_{p=0}^n \frac{1}{p!})$. Déterminer $\lim_{n \to +\infty} \sum_{p=0}^n \frac{1}{p!}$.
 - c. Calculer le volume de la partie de l'espace comprise entre les solides S2 et S5 . (Figure2)

