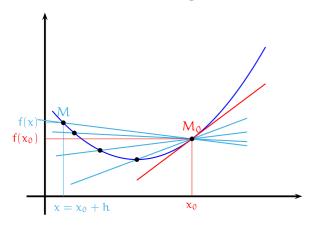
Dérivation

Nombre dérivé. Tangente

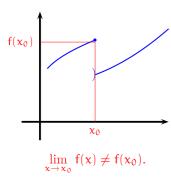


- $M_0(x_0, f(x_0))$ et M(x, f(x)). Pour $x \neq x_0$, le coefficient directeur de la droite (M_0M) est $\frac{f(x) - f(x_0)}{x - x_0}$
- \bullet f est dérivable en x_0 si et seulement si le taux $\frac{f(x)-f(x_0)}{f(x)}$ a une limite finie quand x tend vers x_0 . Il revient au même de dire que le taux $\frac{f(x_0 + h) - f(x_0)}{h}$ a une limite finie quand h tend vers 0.
- \bullet Dans ce cas, le nombre dérivé de f en x_0 est

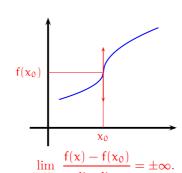
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

- $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}.$ $f'(x_0)$ est le coefficient directeur de la tangente à \mathscr{C}_f au point $M_0(x_0, f(x_0))$.
- Une équation de la tangente à \mathcal{C}_f en $M_0(x_0, f(x_0))$ est $y = f'(x_0)(x - x_0) + f(x_0).$

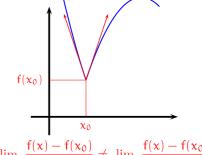
Trois situations où la fonction f n'est pas dérivable en x_0



f n'est pas continue en x_0 .



 \mathcal{C}_{f} admet une tangente parallèle à (Oy).



$$\begin{array}{c} \underset{x \to x_0}{\lim} \\ \xrightarrow{x \to x_0} \\ \mathcal{C}_f \text{ admet deux demi-tangentes de} \end{array}$$

directions différentes.

Fonctions dérivables sur un intervalle. Fonction dérivée

Soit f une fonction définie sur un intervalle I. f est dérivable sur I si et seulement si f est dérivable en chaque réel x de I La fonction dérivée de f, notée f', est alors la fonction qui à chaque réel x de I associe le nombre dérivé f'(x) de la fonction f en x.

Lien avec la continuité

Si f est dérivable en a, alors f est continue en a. Si f est continue en a, f n'est pas obligatoirement dérivable en a.

La fonction valeur absolue est continue sur R mais n'est pas dérivable en 0. La fonction racine carrée est continue sur $[0, +\infty[$ mais n'est pas dérivable en 0. On a ainsi deux exemples de fonctions continues et non dérivables en un point. On ne peut pas dire « f est dérivable et continue sur I » et encore moins « f est continue et donc dérivable sur I ».

Dérivées et sens de variation

Soit f une fonction dérivable sur un intervalle I.

- Si $f' \ge 0$ (respectivement $f' \le 0$), f est croissante sur I (respectivement décroissante sur I).
- \bullet Si f' > 0 (respectivement f' < 0) sauf peut-être en un nombre fini de points où f' s'annule, alors f est strictement croissante sur I (respectivement strictement décroissante sur I).

Dérivées et extrema des fonctions

Soient f une fonction dérivable sur un intervalle ouvert I et x_0 un réel de I.

- Si $f(x_0)$ est un extremum local de f alors $f'(x_0) = 0$.
- Si f' s'annule en x_0 en changeant de signe, $f(x_0)$ et un extremum local de f.

http://www.matheleve.com/

