La fonction racine n-ème

Soit n un entier naturel supérieur ou égal 1.

Définition de la racine n-ème d'un réel positif

Si a est un réel positif, $\sqrt[n]{a}$ est l'unique réel positif x tel que $x^n = a$.

Pour tous réels positifs x et a, $x^n = a \Leftrightarrow x = \sqrt[n]{a}$.

Si $\mathfrak n$ est **impair**, la fonction $\mathfrak x \mapsto \mathfrak x^{\mathfrak n}$ est continue et strictement croissante sur $\mathbb R$ et la définition précédente est valable pour $\mathfrak a$ réel quelconque. Ainsi, $\sqrt[3]{-1} = -1$.

Pour a > 0, on a $\sqrt[n]{a} = e^{\frac{1}{n} \ln(a)}$ ce qui conduit à la notation suivante (conventionnelle pour a = 0).

Pour tout réel positif a, on pose $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Pour tout réel a > 0, tout entier naturel p et tout entier naturel non nul q, on pose $a^{\frac{p}{q}} = \sqrt[q]{a^p}$ et $a^{-\frac{p}{q}} = \frac{1}{\sqrt[q]{a^p}}$.

Les règles usuelles de calcul sur les exposants restent valables pour les exposants fractionnaires.

Si $a \le 0$, on n'écrira jamais d'exposants fractionnaires pour éviter des paradoxes du genre :

$$-1 = \sqrt[3]{-1} = (-1)^{\frac{1}{3}} = (-1)^{\frac{2}{6}} = ((-1)^2)^{\frac{1}{6}} = 1^{\frac{1}{6}} = 1.$$

Propriétés analytiques



• La courbe représentative de la fonction $f_n: x \mapsto \sqrt[n]{x}$ est la symétrique de la courbe représentative de la fonction $x \mapsto x^n$ par rapport à la droite d'équation y = x.

La tangente à \mathscr{C}_{f_n} au point O est l'axe (Oy).

- La fonction $f_n : x \mapsto \sqrt[n]{x}$ est continue sur $[0, +\infty[$.
- La fonction $x \mapsto \sqrt[n]{x}$ est dérivable sur $]0, +\infty[$ et pour x > 0, $(\sqrt[n]{x})' = \left(x^{\frac{1}{n}}\right)' = \frac{1}{n}x^{\frac{1}{n}-1}$.
- $\bullet \lim_{x \to +\infty} \sqrt[n]{x} = +\infty.$