Raisonnement par récurrence

 $\mathscr{P}(\mathfrak{n})$ désigne une certaine propriété dépendant d'un entier \mathfrak{n} et \mathfrak{n}_0 désigne un entier naturel donné.

On veut démontrer que pour tout entier naturel $n \ge n_0$, la propriété $\mathscr{P}(n)$ est vraie.

Pour cela, on procède en deux étapes :

Etape 1. On vérifie que $\mathcal{P}(n_0)$ est vraie,

Etape 2. On se donne un entier $n > n_0$ quelconque.

On suppose que pour cet entier n la propriété $\mathcal{P}(n)$ est vraie (c'est l'hypothèse de récurrence) et on montre que sous cette hypothèse la propriété $\mathcal{P}(n+1)$ est vraie.

Exemple 1. Montrer par récurrence que pour tout entier $n \ge 6$, $2^n \ge 6n + 7$. Solution 1.

- \bullet Si n=6, $2^n=2^6=64$ et $6n+7=6\times 6+7=43$. Comme 43<64, l'inégalité de l'énoncé est vraie quand n=6.
- Soit $n \ge 6$. Supposons que $2^n \ge 6n + 7$ et montrons que $2^{n+1} \ge 6(n+1) + 7$.

$$\begin{split} 2^{n+1} &= 2.2^n \\ &\geq 2(6n+7) \text{ (par hypothèse de récurrence)} \\ &= 12n+14 = 6(n+1)+7+6n+1 \\ &\geq 6(n+1)+7. \end{split}$$

On a montré par récurrence que, pour tout entier naturel $n \ge 6$, $2^n \ge 6n + 7$.

Exemple 2. Soit (u_n) la suite définie par $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = \frac{1}{2}u_n + 2$. Montrer par récurrence que pour tout entier naturel n, $u_n = 4 - \frac{1}{2^{n-1}}$.

Solution 2.

- Si $n=0, 4-\frac{1}{2^{n-1}}=4-2=2=u_0$. L'égalité de l'énoncé est vraie quand n=0.
- Soit $n \ge 0$. Supposons que $u_n = 4 \frac{1}{2^{n-1}}$ et montrons que $u_{n+1} = 4 \frac{1}{2^{(n+1)-1}}$.

$$\begin{split} u_{n+1} &= \frac{1}{2}u_n + 2 \\ &= \frac{1}{2}\left(4 - \frac{1}{2^{n-1}}\right) + 2 \; (\text{par hypothèse de récurrence}) \\ &= 2 - \frac{1}{2}\frac{1}{2^{n-1}} + 2 = 4 - \frac{1}{2^{(n+1)-1}}. \end{split}$$

On a montré par récurrence que, pour tout entier naturel n, $u_n = 4 - \frac{1}{2^{n-1}}$.

Exemple 3. Montrer par récurrence que pour tout entier naturel n, $2^{2n} + 2$ est un entier divisible par 3. Solution 3.

- Si n = 0, $2^{2n} + 2 = 2^0 + 2 = 3$ qui est bien divisible par 3. L'affirmation de l'énoncé est vraie quand n = 0.
- Soit $n \ge 0$. Supposons que $2^{2n} + 2$ est un entier divisible par 3, et montrons que $2^{2(n+1)} + 2$ est un entier divisible par 3.

On a

$$2^{2(n+1)} + 2 = 2^{2n+2} + 2 = 4 \cdot 2^{2n} + 2 = 3 \cdot 2^{2n} + 1 \cdot 2^{2n} + 2 = 2^{2n} + 2 + 3 \cdot 2^{2n}$$

Par hypothèse de récurrence, il existe un entier naturel k tel que $2^{2n} + 2 = 3.k$. Mais alors,

$$2^{2(n+1)} + 2 = 2^{2n} + 2 + 3 \cdot 2^{2n} = 3k + 3 \cdot 2^{2n} = 3(2^{2n} + k).$$

Comme $2^{2n} + k$ est un entier, on en déduit que $2^{2(n+1)} + 2$ est un entier divisible par 3. On a montré par récurrence que, pour tout entier naturel n, $2^{2n} + 2$ est un entier divisible par 3.

