Equations différentielles

Equation différentielle du type y' = ay

Soit a un nombre réel.

Les solutions sur \mathbb{R} de l'équation différentielle y'=ay sont les fonctions de la forme $x\mapsto Ce^{ax}$ où C est une constante réelle.

Exemple avec $\mathfrak{a}=1$: solutions sur \mathbb{R} de l'équation $\mathfrak{y}'=\mathfrak{y}$.

On a tracé ci-contre les courbes d'équations respectives

- $y = 2e^x$
- $y = e^x$
- $y = \frac{1}{2}e^{x}$
- $y = \frac{1}{6}e^{x}$
- $y = \frac{1}{50}e^{x}$
- $\bullet u = 0$
- $\bullet y = -\frac{1}{50}e^{x}$
- $y = -\frac{1}{6}e^x$
- $y = -\frac{1}{2}e^x$
- $y = -e^x$
- \bullet $\dot{y} = -2e^x$

Equation différentielle du type y' = ay + b, $a \neq 0$

Soit a un nombre réel non nul.

Les solutions sur \mathbb{R} de l'équation différentielle y' = ay + b sont les fonctions de la forme

 $x\mapsto Ce^{\alpha x}-\frac{b}{a}$ où C est une constante réelle.

Soit a un nombre réel non nul.

Pour tout couple de réels (x_0, y_0) ,

il existe une solution f de l'équation y'=ay+b et une seule telle que $f(x_0)=y_0.$

Exemple avec $a=1,\ b=2,\ x_0=0$ et $y_0=-1$: solution sur $\mathbb R$ de l'équation y'=y+2 telle que f(0)=-1.

