L. B. Monastir

Série n:34

4 ème Math

P.P.: Ali Zouhaïer

2011 - 2012

Chapitre:

Déplacement et antidéplacement

Exercice Nº1(2 points)

Pour les deux questions suivantes, une seule des trois réponses est exacte. Le candidat indiquera sur la copie sans justification le numéro de la question et la lettre correspondant à la réponse choisie

- 1) Soient Δ_1 , Δ_2 et Δ_3 trois droites strictement paralleles l'isometrie f= $S_{\Delta_1} \circ S_{\Delta_2} \circ S_{\Delta_3}$ est une :
 - a) symetrie orthogonale b) symetrie glissante c) une translation
 - 2) Soit fun déplacement , g un antideplacement tels que f(A)=B et g(B)=A avec $A \neq B$. Alors $g \circ f$ est:
 - a) une symetrie glissante
- b) symetrie orthogonale
 - c) translation

Exercice 2 d'après un devoir

Dans le plan orienté on considère un triangle ABC rectangle en A et tel que

$$\widehat{\left(\overrightarrow{BA};\overrightarrow{BC}\right)} \equiv \frac{\pi}{3}$$
 [2 π]. On désigne par $O = B*C, I = A*CetJ = A*B$.

- 1/ Montrer qu'il existe un déplacement unique R vérifiant R(A) = C et R(B) = O
- 2/a- Montrer que R est une rotation puis construire son centre D.
 - b- Déterminer la nature du quadrilatère AODB.
 - **c** Montrer que $\widehat{(\overrightarrow{OA};\overrightarrow{OC})} = \frac{2\pi}{3}$ [2 π].
- 3/ On désigne par $R_C = r_{\left(C, \frac{\pi}{3}\right)}$, $R_A = r_{\left(A, \frac{\pi}{3}\right)}$ et $T=t_{\overrightarrow{AC}}$ puis on pose

$$f = R_C \circ T \circ R_A$$
, $g = S_{(OI)} \circ S_{(OJ)}$ et $h = t_{\overrightarrow{AB}}$.

- **a** Déterminer f(A).
- **b** Donner la nature et les éléments caractéristiques de f.
- c- Caractérisr les applications g et h.

Exercice 3 D'après un devoir

Dans le plan orienté on considère un triangle en A tel que

$$\widehat{(\overrightarrow{AB},\overrightarrow{AC})} \equiv \frac{\pi}{2} \quad [2\pi] , \widehat{(\overrightarrow{BC},\overrightarrow{BA})} \equiv \frac{\pi}{3} \quad [2\pi].$$

On note O=B*C , J=A*C , K=O*B , $I=S_{(BC)}(A)$.

- 1/ Montrer que OAB est équilatéral.
- 2/a- Montrer qu'il existe une seul rotation R tels que R(A)=C et R(B)=O.
 - **b** Caractériser R.

On pose
$$f = S_{(BC)} \circ R$$
; $g = S_{(BC)} \circ R \circ S_{(KJ)}$; $h = R^{-1} \circ S_{(BC)} \circ t_{\overrightarrow{KJ}}$

- 3/a- Déterminer f(I) et f(A) , en justifiant.
 - **b** Déterminer la droite Δ tel que R=S $_{\Delta} \circ S_{(AI)}$
 - c- Montrer que f est une symétrie glissante dont on précisera l'axe et le vecteur.
- 4/ Déduire la nature et les éléments caractéristiques de g.
- **5/a-** Montrer que $(S_{(BC)} \circ R)^{-1} = S_{(KJ)}ot_{\overrightarrow{Jk}}$.
 - **b** Déduire que h est une symétrie orthogonale que l'on précisera.

Exercice 4 Extrait d'un Bac

Soir AFED un carré de coté $4 \ cm$ tel que $\widehat{\left(\overrightarrow{AF},\overrightarrow{AD}\right)} \equiv \frac{\pi}{2}[2\pi]$ et soit O son centre. On désigne par B et O_1 les symétriques respectifs de A et O par rapport à la droite (EF).

- **A-** 1/a- Soit r la rotation définie par r(F) = E et r(E) = D. Préciser l'angle et le centre de r.
 - **b-** Soit $f = r \circ S_{(OO_1)}$; $où S_{(OO_1)}$ est la symétrie orthogonale d'axe (OO_1) . Montrer que f est la symétrie orthogonale d'axe (OE).
 - **2**/ Soit $r' = t_{\overrightarrow{OO_1}} \circ r^{-1}$ où $t_{\overrightarrow{OO_1}}$ désigne la translation de vecteur $\overrightarrow{OO_1}$ et r^{-1} désigne la rotation réciproque de r.
 - **a** Montrer que r' est une rotation dont on précisera l'angle.
 - **b** D'éterminer r'(O). En déduire que F est le centre de r'.
 - 3/ On désigne par g l'antidéplacement défini par g(D) = F et $g(O) = O_1$.
 - a- Montrer que g est une symétrie glissante et déterminer sa forme réduite.
 - **b** Soit M un point du plan. Montrer que [g(M) = r'(M)] si et seulement si [f(M) = M]
 - **c** En déduire l'ensemble des points M tels que g(M) = r'(M).

Exercice3(5pts)

Soit AFED un carré de coté 4 cm tel que $(\widehat{\overrightarrow{AF},\overrightarrow{AD}}) \equiv \frac{\pi}{2} [2\pi]$ et soit O son centre .

- 1)a) Soit r la rotation définie par r(F) = E et r(E) = D. Préciser l'angle et le centre de r .
 - b) Soit = $r \circ S_{(OO_1)}$. Montrer que f est la symétrie orthogonale d'axe (OE).
- 2) Soit $r'=t_{(\overrightarrow{oo_1})}\circ r^{-1}$ ou r^{-1} désigne la rotation réciproque de r.
 - a) Montrer que $\,r'$ est une rotation dont on précisera l'angle.
 - b) Déterminer $r'({\it 0})$. En déduire que F est le centre de r'.
- 3) On désigne par g l'antidéplacement défini par g(D) = F et g(O) = O1.
 - a) Montrer que g est une symétrie glissante et déterminer sa forme réduite.
 - b) Soit M un point du plan, montrer que :

$$[g(M) = r'(M)]$$
 si et seulement si $[f(M) = M]$.

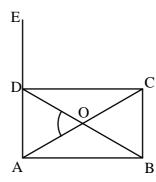
c) En déduire l'ensemble des points M tels que g(M) = r'(M).

Exercice 7

ABCD est un rectangle de centre O

tel que
$$\widehat{(\overrightarrow{OD};\overrightarrow{OA})} = \frac{\pi}{3}$$
 [2 π].

- **1)a**/ Prouver qu'il existe une seule rotation *R* qui transforme *C* en *A* et *B* en *O*.
 - **b**/ Désignons par Ω le centre de R.



- i) Justifier que $\widehat{\left(\Omega B;\Omega C\right)}\equiv\frac{\pi}{3}$ $[2\pi].$
- ii) Prouver donc que $\Omega \in [AB]$.
- **2)** Soit l'application $f = S_{(OA)} \circ S_{(\Omega O)} \circ S_{(\Omega C)}$.
 - **a**/ Calculer f(B) et f(C).
 - **b**/ Prouver que f est une symétrie glissante dont on donnera le vecteur \vec{u} et l'axe Δ .
- 3) Soit E le symétrique de A par rapport à D et A' le point vérifiant $\overrightarrow{A'E} = \overrightarrow{OD}$.
 - **a**/ Montrer que AOA'D est un losange.
 - **b**/ Prouver donc que f(A) = E.