L. B. Monastir

P.P.: Ali Zouhaïer

Série n:44

4 èm e Math

Chapitres: Intégrale + Log + ...

Exercice 1 bac 2011 (s. controle)

Soit f la fonction définie sur]0, $+\infty$ [par f(x) = $\int_1^x \frac{\cos^2 t}{t} dt$

Répondre par vrai ou faux à chacune des affirmations suivantes, en justifiant la réponse.

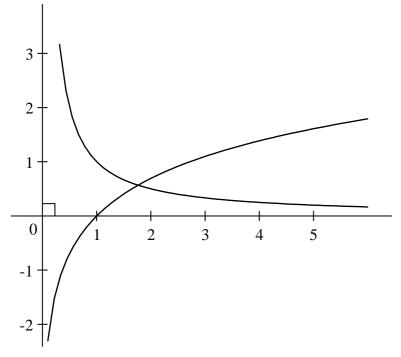
- 1) Pour tout x > 0, $f'(x) \ge 0$.
- 2) Pour tout x > 0, $f(x) \ge 0$.
- 3) $f(2) \le ln(2)$.

Exercice 2 (5 points)

Bac 2010 s. principale

- 1/ Soit la fonction f définie sur]0;+ ∞ [par f(x) = $\ln(x) x \ln(x) + x$.
 - **a-** Calculer $\lim_{x\to 0^+} f(x)$; $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$.
 - **b** Montrer que pour tout x > 0; $f'(x) = \frac{1}{x} \ln(x)$.
- **2**/ Dans la figure ci-dessous \mathbf{C}_g et \mathbf{C}_h sont les courbes représentatives dans un repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ des fonctions g et h définies sur]0;+ ∞ [par $\mathbf{g}(x) = \frac{1}{x}$ et $\mathbf{h}(x) = \ln(x)$.

 C_g et C_h se coupent en un point d'abscisse β .



- **a-** Par une lecture graphique donner le signe de f'(x).
- **b** En déduire le sens de variation de f .
- **c** Montrer que $f(\beta) = \beta + \frac{1}{\beta} 1$.
- 3/ On désigne par C_f la courbe représentative de f dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.
 - **a** Etudier la position relative des courbes C_f et C_h .
 - **b** Montrer que la courbe C_f coupe l'axe des abscisses en deux points d'abscisses respectives x_1 et x_2 telles que $0,4 < x_1 < 0,5$ et $3,8 < x_2 < 3,9$.
 - **c** Placer dans le repère $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ les points $A(\beta, 0)$ et $B\left(0, \frac{1}{\beta}\right)$ et en déduire

une coçnstruction du point de coordonnées $(\beta; f(\beta))$.

- **d** Tracer C_f.
- **4**/ Pour tout réel t de]0;+ ∞ [\{ β } on désigne par $\mathcal{A}(t)$ l'aire de la partie du plan S(t) limitée par les courbes C_g et C_h et la droite d'équation x=t.
 - **a-** Montrer que pour tout t de $]0;+\infty[\setminus\{\beta\};\ \mathcal{A}(t)=f(\beta)-f(t)]$
 - **b** Soit $t_0 > \beta$. Hachurer $S(t_0)$.
 - **c** Montrer qu'il existe un réel unique t_1 dans]0; β [tel que $\mathcal{A}(t_1) = \mathcal{A}(t_0)$. Hachurer $S(t_1)$.

Exercice 3 (5 points)

Soit f la fonction définie sur l'intervalle $]0,+\infty[$ par : $f(x) = \frac{1}{x} + \ln\left(\frac{x}{1+x}\right)$

A/

- 1/a) Etudier les variations de f.
 - b) Donner une équation de la tangente à la courbe de f au point d'abscisse 1.
- 2/ Tracer la courbe C_f de f et sa tangente au point d'abscisse 1.
- 3/a) Montrer que f réalise une bijection de IR^{*} sur un intervalle J à préciser.
 - b) Montrer que l'équation f(x) = x admet une solution unique a dans l'intervalle $]0;+\infty[$ et que 0.5 < a < 1 puis donner un encadrement de a d'amplitude 0.25.

B/

- 1/a) Justifier pour tout entier naturel n non nul l'encadrement : $\frac{1}{n+1} \le \int_{n}^{n+1} \frac{dt}{t} \le \frac{1}{n}$.
 - b) Vérifier que : $\int_{n}^{n+1} \frac{dt}{t} = \frac{1}{n} f(n).$
 - c) En déduire que pour tout entier naturel n non nul , $0 \le f(n) \le \frac{1}{n(n+1)}$.
- 2/ On considère la suite (S_n) définie sur IN* par: $S_n = \sum_{k=n}^{k=2n} f(k)$.
 - a) Montrer que pour tout $n \in IN^*$, $0 \le f(n) + f(n+1) + ... + f(2n-1) + f(2n)$
 - b) Déterminer les réels a et b tels que pour tout réel x distinct de (-1) et de 0 , on a: $\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$.
 - c) En déduire l'égalité: $S_n = \frac{n+1}{n(2n+1)}$.
 - d) En utilisant les questions précédentes, déterminer alors la limite quand n tend vers $+\infty$ de la somme suivante : f(n) + f(n+1) + ... + f(2n-1) + f(2n)

Exercice 4

- I) Soit la fonction $g: IR_+^* \to IR; x \mapsto x^2 3x + 1 + Logx$
 - 1/ Etudier les variations de g.
 - **2/a-** Montrer que l'équation g(x) = 0 admet une solution unique α .
 - **b** Vérifier que $2, 1 < \alpha < 2, 2$.
 - 3/ En déduire le signe de g(x).
- II] Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{x-1}{x^2 xLogx}$. C_f désigne la

courbe représentative de f dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1/ Montrer que $\forall x \in]0; +\infty[; f'(x) = \frac{-g(x)}{(x^2 xLogx)^2}.$
- **2**/ Vérifier que $\forall x \in]0; +\infty[; f(x) = \frac{1 \frac{1}{x}}{x Logx}]$
- 3/ Prouver que $f(\alpha) = \frac{1}{\alpha(\alpha 1)}$ déduire un encadrement de $f(\alpha)$.
- **4**/ Dresser le tableau de variation de f.
- **5**/ Tracer C_f (en prendra $\alpha = 2, 2$)
- **6**/ Calculer l'aire de la partie du plan limitée par C_f , l'axe des abscisses, et les droites d'équations respectives x = 1 et x = 2.

Exercice 5

1/a- Montrer que pour tout $t \ge 0$; $\frac{1}{1+t} \le 1$

b- En intégrant prouver que $\forall x \in IR^+; \ln(1+x) \leq x$.

* on admet que ln(1+x) = x si et seulement si x = 0

2/ Soit la fonction
$$f: x \mapsto \begin{cases} \frac{\ln(1+x)}{x} & \text{si } x > 0 \\ f(0) = 1 \end{cases}$$
.

On pose $I = \int_0^1 f(x) dx$.

a- Prouver que le réel I existe.

b-Donner une interprétation géométrique de I.

3/ Soit la suite (I_n) définie sur IN^* par : $I_n = \int_{-\frac{1}{n}}^1 f(x) dx$.

a- Vérifier que
$$\forall n \in IN^*; I_{n+1} = \int_{\frac{1}{n+1}}^{\frac{1}{n}} f(x) dx + I_n.$$

b- Déduire que la suite (I_n) est croissante sur IN^* .

4/a- Vérifier que
$$\forall n \in IN^*; I_n = I - \int_0^{\frac{1}{n}} f(x) dx$$

b- Déduire que la suite (I_n) est majorée.

5/a- A l'aide de **1/**, montrer que
$$\forall n \in IN^*; 0 \le \int_0^{\frac{1}{n}} f(x) dx \le \frac{1}{n}$$
.

b- Déduire que $\lim_{n\to+\infty} I_n = I$.

Exercice 6

I)Soit la fonction
$$f: x \mapsto \begin{cases} x^2 \ln\left(1 + \frac{1}{x}\right) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

 C_f est la courbe représentative de f dans un repère R.

1/ Etudier la dérivabilité de f en 0, interpréter géométriquement le résultat.

2/a- Montrer à l'aide des inégalités d'accroissements finis que :

$$\forall x > 0; \ \ln\left(\frac{x+1}{x}\right) > \frac{1}{x+1}.$$

b- Prouver que f est strictement croissante sur IR_+^* .

3/a- Montrer que
$$\forall t > 0$$
; $t - \frac{1}{2}t^2 < \ln(1+t) < t - \frac{1}{2}t^2 + \frac{1}{3}t^3$.

b- Prouver donc que $\lim_{x\to +\infty} [f(x)-x] = -\frac{1}{2}$.

4/ Dresser le tableau de variation de f puis tracer C_f .

II) Pour
$$n \in IN^* \setminus \{1\}$$
 on pose la fonction $f_n : x \mapsto x^n Log(1 + \frac{1}{x}), \ \forall x \in IR_+^*$.

1/ Montrer que f_n est strictement croissante sur IR_+^* (on pourra profiter de I)2/a-)

2/ Montrer que l'équation $f_n(x) = 1$ admet une seule solution u_n dans IR_+^* .

3/ Vérifier que $u_n > 1$.

4/a- Montrer que $\forall x \ge 0$; $(1+x)^n \ge 1 + nx$.

b- Déduire que $\left(1+\frac{1}{n}\right)^n \geqslant 2$.

c- Montrer que
$$Log\left(1 + \frac{1}{1 + \frac{1}{n}}\right) \ge Log\left(\frac{5}{3}\right)$$
.

d- Montrer enfin que $u_n < 1 + \frac{1}{n}$

e- Calculer $\lim_{n\to +\infty} u_n$.

5/ Calculer $\lim_{n\to+\infty} (u_n)^n$.