L. B. Monastir

Série n:51

4 èm e Math

P.P. : Ali Zouhaïer

Chapitres: Révision 1 (Mars)

Exercice 1

•

1/ A l'aide d'une calculatrice déterminer le reste de division euclidienne de 3¹³ par 71.

- **2**/ On se propose de résoudre dans IN l'équation $(E): x^{27} \equiv 3$ [71] Soit x une solution de (E).
 - a) Vérifier que 71 est un nombre premier.
 - **b)** Montrer que $71 \wedge x = 1$ puis que $x^{70} \equiv 1$ [71]
 - c) En remarquant que $27 \times 13 70 \times 5 = 1$ prouver que $x = 3^{13}$ [71]
- **3**/ Soit x un entier naturel. Montrer que si $x = 3^{13}$ [71] alors x est une solution de (E).
- 4/ Montrer enfin que l'ensemble des solutions de (E) est l'ensemble des entiers naturels de la forme 18+71k avec $k \in IN$.

Exercice 2

1/a- Trouver tous les couples (p,q) d'entiers relatifs vérifiant 7p - 5q = 2.

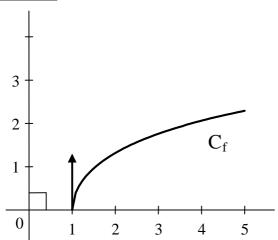
- **b** En déduire les entiers relatifs x qui vérifient $\begin{cases} x \equiv -1 & [5] \\ x \equiv -3 & [7] \end{cases}$
- **2**/ Soit l'entiers $N = a_n \times 6^n + a_{n-1} \times 6^{n-1} + a_{n-2} \times 6^{n-2} + \ldots + a_1 \times 6^1 + a_0$ avec $a_n, a_{n+1}, a_{n-2}, \ldots a_1$ et a_0 sont des chiffres. On note que N est écrit encore sous la forme $\overline{a_n a_{n-1} a_{n-2} \ldots a_1 a_0}$ dans la base 6.
 - **a-** Justifier que pour tout entier naturel k on a : $6^k \equiv 1$ [5] et $6^k \equiv (-1)^k$ [7]
 - **b** Déduire que si N est divisible par 35 alors

$$\begin{cases}
 a_n + a_{n-1} + a_{n-2} + \dots + a_1 + a_0 \equiv 0 & [5] \\
 (-1)^n a_n + (-1)^{n-1} a_{n-1} + \dots + a_2 - a_1 + a_0 \equiv 0 & [7]
\end{cases}$$

3/ Déterminer les chiffres x et y pour que l'entier $N = \overline{10x005y}$ dans la base 6 soit divisible par 35.

Exercice 3

•



Dans la figure ci-dessus C_f est la courbe représentative d'une fonction f dans un repère orthonormé .

Page: 1

- 1/a- Par une lecture graphique donner le tableau de variation de f
 - ${f b}{\mbox{-}}$ Prouver que f admet une fonction récioproque ${f f}^{-1}.$
 - **c** Tracer la courbe de f⁻¹ sur le même graphique.

2/ Sachant que $f(x) = \ln(x + \sqrt{x^2 - 1})$ déterminer l'expression de $f^{-1}(x)$

3/ Soit la suite (u_n) définie sur IN par : $u_0 = \frac{3}{2}$ et $u_{n+1} = 2u_n^2 - 1$.

Montrer que $\forall n \in IN$; $u_n > 1$.

4/ Soit la suite (v_n) définie par $v_n = f(u_n)$; $\forall n \in IN^*$

- a- Calculer v₀.
- **b** Vérifier que $v_{n+1} = 2v_n$; $\forall n \in IN$

c- En déduire l'expression de v_n en fonction de n.

d- Montrer enfin que
$$u_n = \frac{1}{2} \left[\left(\frac{3+\sqrt{5}}{2} \right)^{2^n} + \left(\frac{3-\sqrt{5}}{2} \right)^{2^n} \right].$$

Exercice 4 d'après un devoir

Soit f la fonction définie sur $[0;+\infty[$ par $f(x) = \sqrt{1-e^{-x}}$

1/ Etudier la dérivabilité de f en 0 et interpréter le résultat graphiquement.

2/ Dresser le tableaub de variation de f et tracer sa courbe C_f dans un RON.

3/a) Montrer que f réalise une bjection de $[0;+\infty[$ sur un intervalle J que l'on précisera.

b) Montrer que $f^{-1}(x) = \ln\left(\frac{1}{1-x^2}\right)$ pour tout $x \in J$.

c) Montrer que l'équation $f^{-1}(x) = x$ admet dans]0;1[une solution unique α et que $0,7 < \alpha < 0,8$.

4/ Pour tout $n \in IN^*$ on pose pour tout $x \in [0,1[F_n(x) = \int_0^{g(x)} (f(t))^n dt$ avec $g(x) = f^{-1}(x)$ et on note aussi $I_n = F_n(\alpha)$.

a- Montrer que pour tout $n \in IN^*$ F_n est dérivable sur [0,1[et que $F'_n(x) = \frac{2x^{n+1}}{1-x^2}$.

b- Calculer $F'_{n+2}(x) - F'_n(x)$ en fonction de x. En déduire que $F_{n+2}(x) - F_n(x) = \frac{-2x^{n+2}}{n+2}$

c) Déduire de ce qui précède que $I_{n+2} = I_n - \frac{2\alpha^{n+2}}{n+2}$

5/a) Calculer I_2 en fonction de α .

b) Montrer que pour tout n de IN*; $I_{2n} = \alpha - 2\sum_{k=1}^{n} \frac{\alpha^{2k}}{2k}$.

c) Montrer que pour tout n de IN*; $0 \le I_n \le \alpha^{n+1}$. Calculer $\lim_{n \to \infty} I_n$ et

déduire
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{\alpha^{2k}}{2k} \right)$$
.

Exercice 5 d'après un devoir

Dans le plan orienté muni d'un repère orthonormé direct $(0; \vec{i}; \vec{j})$. On considère

l'application f du plan dans lui même qui à tout point M d'affixe z=x+iy avec x et y réels, associe le point M' d'affixe z'=x'+iy' avec

$$\begin{cases} x' = \frac{3}{5}x - \frac{4}{5}y + 2\\ y' = -\frac{4}{5}x - \frac{3}{5}y + 2 \end{cases}$$

1/ Exprimer z' en fonction de z.

2/ Montrer que f est une isométrie qui d'admet pas de point invariant.

3/ Montrer que f est une symétrie glissante.

4/a- Soit le vecteur $\vec{u} = \frac{4}{5}\vec{i} - \frac{2}{5}\vec{j}$, donner la forme complexe de la translation de vecteur $-\vec{u}$.

b- En déduire l'ensemble des points invariants par $f \circ t_{-\vec{u}}$.

c- Caractériser alors f.

Exercice 6

- I) 1/ Drésser le tableau de variation de la fonction $f: x \mapsto \frac{x^2-1}{x^2+2}$
 - **2**/ Prouver que l'équation f(x) = x possède une seule solution α et que $-\frac{1}{2} < \alpha < 0$.
 - 3/ Donner le tableau de signe de (f(x) x).
 - **4**/ Soit la suite (u_n) définie sur IN par : $u_0 = 0$ et $u_{n+1} = f(u_n)$
 - **a-** Montrer que $\forall n \in IN; -\frac{1}{2} \leq u_n \leq 0.$
 - **b** Montrer que si (u_n) converge alors sa limite est α .
 - 5/ Préciser le sens de variation de $g = fof \operatorname{sur} \left[-\frac{1}{2}; 0 \right]$
- II) Soient les suites $(v_n)_{n \in IN}$ et $(w_n)_{n \in IN}$ définies par : $v_n = u_{2n}$ et $w_n = u_{2n+1}$.
 - **1/a-** Trouver une relation reliant v_{n+1} et v_n intervenant la fonction de f.
 - **b** Etudier alors la monotonie de (v_n) .
 - **2**/ Etudier la monotonie de (w_n) .
 - **3/a-** Montrer que $\forall (x,y) \in \left[-\frac{1}{2};0\right]$; $|f(x)-f(y)| \leq \frac{16}{27}|x-y|$.
 - **b** Déduire que $\forall n \in IN; |v_{n+1} w_{n+1}| \le \left(\frac{16}{27}\right)^2 |v_n w_n|$.
 - **c** Montrer par récurrence que $\forall n \in IN; |v_n w_n| \le k^n |v_0 w_0|$ avec $k = \left(\frac{16}{27}\right)^2$
 - **4**/ Montrer que $\forall n \in IN; w_n < \alpha < v_n$
 - **5**/ Prouver enfin que (u_n) converge vers α .

Exercice 7 d'après un devoir

Dans le plan complexe P rapporté à un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$.

On considère les points A et A' d'affixes respectives (-a) et $(-\overline{a})$ où a est un nombre complexe non réel donné.

Soit f l'application de $P\setminus\{A'\}$ dans P qui à tout point M d'affixe z associe le point M' d'affixe $z'=\frac{z+a}{z+\overline{a}}$ et $(E):z^2+(\overline{a}-1)z-a=0$ l'équation dans $\mathbb C$ d'inconnue z.

- 1/ Montrer que (M' appartient au cercle trigonométrique) si et seulement si (M appartient à la médiatrice de [AA'])
- **2**/ Montrer que les affixes des points invariants par f sont les solutions de l'équation (E).
- **3**/ On suppose que : a = 1 + ik, $k \in IR^*$. Résoudre dans \mathbb{C} l'équation (E).
- **4**/ On suppose dans cette question que : $a = -\sqrt{2 \sqrt{2}} + i\sqrt{2 + \sqrt{2}}$
 - **a** Calculer a^2 . En déduire le module et un argument de a.
 - **b** Montrer que si (z_1 et z_2 sont solutions de (E)) alors ($|z_1||z_2|=2$ et $arg(z_1)+arg(z_2)\equiv -\frac{3\pi}{8}$ [2π])
- **5**/ On suppose dans cette question que $a=ie^{i\theta}$ où θ est un réel de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.
 - **a-** Mettre sous la forme exponentielle a et $(1 \overline{a})$.
 - **b** Montrer que :

si
$$(z_1$$
 et z_2 sont solutions de (E)) alors $(\arg(z_1+z_2)\equiv\frac{\pi}{4}-\frac{\theta}{2}$ $[2\pi])$

- **6**/ Montrer que : z' est réel si et seulement si Re(z) = -Re(a).
- **7**/ Soit $n \in IN^*$. Montrer que : si $(z')^n = 1$ alors z est réel.

Exercice 2 Bac

Le plan est rapporté à un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$. (on choisira 2 cm comme unité graphique). Soit (E) la conique d'équation $3(x+1)^2 + 4y^2 = 12$. 1/a- Quelle est la nature du conique ?

- **b** Construire (E).
- **c** Déterminer les éléments caractéristiques de (E).
- **2**/ A chaque point M de (E) de coordonnées (x,y), on associe le nombre complexe z = x + iy affixe de M.
 - **a**) Démontrer que $|z| = \frac{1}{2}(3 x)$.
 - **b**) En déduire que $|z| = \frac{3}{2 + \cos \theta}$; θ est un argument de z.
- **3**/ Soient M' et M'' les points de (E) dont les affixes z' et z'' ont pour arguments respectifs θ et $\theta + \pi$.
 - **a**) Calculer $\|\overrightarrow{M'M''}\|$ en fonction de θ .
 - **b**) Déterminer θ pour que $\|\overrightarrow{M'M''}\|$ soit maximum puis minimum.

Exercice 9 origine inconnu!

1/ Soit $\theta \in]0; \frac{\pi}{2}]$ et (E) l'équation dans $\mathbb C$:

$$z^2 - \frac{4}{\sin \theta}z + \frac{13}{\sin^2 \theta} - 9 = 0$$

- **a-** Résoudre dans \mathbb{C} l'équation (E). On notera z' et z'' les solutions de (E) avec $I_m(z') \geq 0$.
- **b-** Pour quelle valeur de θ on a : $|z'|^2 = 43$.
- **2**/ Soit M' et M" les points images de z' et z'' dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$.
 - **a** Montrer que M' et M" varie sur une partie d'une hyperbole (\mathcal{H}) dont on présisera une équation cartésienne.
 - **b** Préciser les sommets et les asymptotes de (\mathcal{H}) puis construire (\mathcal{H}) .
- **3**/ On pose $u(x) = e^x + e^{-x}$ avec $x \in IR^+$ et $F(x) = \int_2^{u(x)} \sqrt{t^2 4} \, dt$.
 - **a** Calculer F'(x).
 - **b** Montrer que $F(x) = \int_0^x (e^t e^{-t})^2 dt$ puis calculer F(x) en fonction de x.
 - **c** Calculer $u(\ln(2))$ puis déduire l'aire de la partie limitée par (\mathcal{H}) et les droites $\Delta: x=2$ et $\Delta': x=\frac{5}{2}$.

Exercice Nº4: (6 pts)

Dans le plan complexe rapporté a un repère orthonormé (o , \vec{u} , \vec{v}) , on donne les points A (-i) et B (i) .

Soit f l'application de $P \setminus \{A\}$ dans $P \setminus \{B\}$ qui a tout point M(z) associe le point M'(z') tel que : $z' = \frac{i z + 1}{z + i}$

- 1°) On suppose $M \neq A$ et $M \neq B$
 - a) Montrer que $(\vec{u}, \overrightarrow{OM'}) \equiv \frac{\pi}{2} + (\overrightarrow{MA}, \overrightarrow{MB}) [2\pi]$
 - b) En déduire l'ensemble (E) des points M(z) tels que : z' est un réel non nul .
- 2°) Soit dans \mathbb{C} l'équation (F): $(iz+1)^3 = (z+i)^3$
 - a) Montrer que si z est une solution de (F) alors z est réel.
 - b) Soit $\alpha \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$. Donner la forme exponentielle du nombre complexe $\left(\frac{1+i tg \alpha}{i+tg\alpha}\right)$. En déduire les valeurs de $\alpha \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$ tels que $tg \alpha$ soit une solution de (F).
- 3°) Soit θ un réel de l'intervalle $]0, 2\pi[$
 - a) Résoudre dans \mathbb{C} l'équation : $z^2 2iz + 2ie^{i\theta} e^{2i\theta} = 0$
 - b) On désigne par M_1 et M_2 les points d'affixe respectives $z_1 = e^{i\theta}$ et $z_2 = 2i e^{i\theta}$
 - i) Montrer que M1 et M2 sont symétriques par rapport a un point fixe que l'on précisera.
 - ii) trouver l'ensemble (Γ) décrit par M_1 et M_2 lorsque θ varie.
 - iii) Montrer que (M_1M_2)² = 8 (1 sin θ). Déduire la valeur de θ pour laquelle la distance M_1M_2 est maximale