L. B. Monastir

P.P.: Ali Zouhaïer

Série n:59

4 èm e Math

Séance n:

Chapitre: Arithmétique + Equation différentielle + ...

Exercice 1 D'après un devoir

I)

- 1/ Déterminer les restes de la division euclidienne de 4ⁿ par 9 pour n entier naturel.
- **2**/ Soit le nombre $A = (3n-1)4^n + 1$.
 - **a-** Vérifier que pour tout n = 3q, le nombre A est divisible par 9.
 - **b** Démontrer que pour tout entier naturel n, le nombre A est divisible par 9.

II)

- 1/ On considère l'équation (E): 8x + 5y = 1 où (x, y) est un couple d'entiers relatifs.
 - **a** Donner une solution particulière de (E).
 - **b** Résoudre (E).
- **2**/ Soit *N* un entier tel que $\begin{cases} N \equiv 1 \ [8] \\ N \equiv 2 \ [5] \end{cases}$

Démontrer que N = 17 [40]

- **3**/ On considère dans \mathbb{Z}^2 l'equation (E') : 8x + 25y = 5.
 - **a-** Démontrer que si (x, y) est une solution de (E') alors $x \equiv 0$ [5]
 - **b** Résoudre alors (E').
- **4/a-** Soit $d = x \wedge y$ où (x, y) est solution de (E'), déterminer les valeurs de d.
 - **b** Déterminer l'ensemble des solutions de (E') dont le $p \gcd$ est 5.

Exe-2-(4 points)

Pour tout entier naturel n on pose $a_n = 2 \times 10^n + 1$.

1/

- a- Montrer que pour tout entier naturel n a_n est divisible par 3
- b- Discuter suivant n le reste de la division euclidienne de an par 11.
- c- En déduire que pour tout n an et 11 sont premiers entre eux
- 2/ On considère dans ZxZ l'équation (E) : a₂x + 11y = 1
 - a- Justifier que (E) admet au moins une solution
 - b- Résoudre alors (E) dans ZxZ
- 3/ Le plan complexe est rapporté à un repère orthonormé (o,i,j). On considère le point A_n

d'affixe
$$z_n = 2e^{i\pi\frac{a_n}{4}}$$

- a- Montrer que pour tout n de IN, An appartient à un cercle fixe que l'on précisera
- b- Montrer que pour tout n non nul on a $A_n \in \{A_1, A_2\}$

► Exercice 3 ◄ (3,5 points) temps max. : 45 minutes

1/ Soit dans
$$\mathbb{Z} \times \mathbb{Z}$$
 l'équation (E) : $44x + 35y = 17$

a- Trouver deux entiers u et v tels que
$$44x + 35y = 1$$
 (0,5)

b- Déduire une solution particulière de
$$(E)$$
. $(0,25)$

c- Résoudre alors
$$(E)$$
. $(0,5)$

2/ Soit la suite d'entiers (u_n) définie sur IN par : $u_n = 8^n + 6^{2n+1}$

a- Montrer que
$$\forall n \in IN$$
; $\mathbf{u}_n \equiv 0$ [7] (0,75)

b- Montrer que
$$\forall n \in IN^*$$
; 2^{2n+1} divise u_n . (0,5)

3/ Résoudre dans
$$\mathbb{Z} \times \mathbb{Z}$$
 l'équation (E') : $11u_1x - u_2y = 3808$. (1)

Date: 03/01/2014

Exercice 5

1. On considère l'équation (E_1) :

$$6x - 5y = 7$$

dont les inconnues x et y sont des entiers relatifs.

- (a) On suppose que le couple d'entiers (x, y) vérifie 6x 5y = 7. Démontrer que $x \equiv 2$ [5]
- (b) En déduire tous les couples d'entiers, solutions de l'équation (E_1) .
- 2. Application : dans le plan muni d'un repère $(O; \vec{i}, \vec{j})$, on note Δ la droite d'équation

$$6x - 5y = 7$$

Déterminer le nombre de points de Δ dont les coordonnées sont des entiers naturels et dont l'abscisse est inférieure à 500.

3. On considère à présent l'équation (E_2) :

$$6x^2 - 5y^2 = 7$$

dont les inconnues x et y sont des entiers relatifs.

(a) Vérifier que si le couple (x; y) est solution de (E_2) , alors

$$x^2 \equiv 2$$
 [5]

- (b) Démontrer que, pour tout entier α , α^2 est congru à 0, à 1 ou à 4 modulo 5.
- (c) Quel est l'ensemble solution de l'équation (E_2) ?

Exercice 5 (exercice 8 page 201)

- 1/ Vérifier que la fonction $u: x \mapsto 2$ est une solution de l'équation différentielle y'+2y=y².
- **2**/ Soit E l'ensemble des fonction f dérivables sur IR, qui ne s'annule pas sur IR, telles que $f'(x)+2f(x)=(f(x))^2$ pour tout réel x
 - a- Vérifier que l'ensemble E est non vide.
 - **b** Soit f une fonction de E. Montrer que $g=\frac{1}{f}$ est une solution d'une équation différentielle de la forme y'=ay+b où a et b sont deux réelles.
 - c- Déterminer alors E.

Exercice 6 (exercice 22 page 203)

On se propose de déterminer les fonctions continues sur IR et vérifiant l'équation (E): $\forall x \in IR$, $f(x) = x + \int_0^x f(t)dt$.

- 1/ Montrer que si une fonction f vérifie (E) alors f est dérivable sur IR.
- $\mathbf{2}/$ Montrer que toute solution de (E) est solution de l'équation différentielle

Page : 2 Date: 03/01/2014

(E'): y' = y + 1.

Réciproquement, quelle condition doit vérifier une solution de (E') pour être une solution de (E)

3/ Résoudre (E).

Exercice 7 bac

On désigne par f une fonction déivable sur IR et par f' sa fonction dérivée.

Ces fonctions vérifient les propriétés suivantes :

- (1) : pour tout réel x, $f^2(x) = (f')^2(x) 4$.
- (2): f'(0) = 1.
- (3) : la fonction f' est dérivable sur IR.
- **1/a** Démontrer que pour tout réel $x, f'(x) \neq 0$.
 - **b** Calculer f(0).
- **2**/ Démontrer que pour tout réel x, f''(x) = f(x) où f'' désigne la dérivée seconde de la fonction f.
- **3/a-** Vérifier que (f' + f)' = f' + f et (f' f)' = -f' + f
 - **b** Résoudre les équation différentielles (E): y' = y et (E'): y' = -y.
 - **c** En déduire que pour tout réel x , $f(x) = e^x e^{-x}$.

Exercice 8

Soit l'équation différentielle (E) : y''(x) + 4y(x) = x.

- 1/ Vérifier que la fonction f : $x \mapsto \frac{1}{4}x$ est une solution particulière de (E).
- **2**/ Résoudre l'équation différentielle (E_0) : y''(x) + 4y(x) = 0
- **3**/ Soit z(x) = y(x) f(x).

Montrer que y est solution de (E) si et seulement si z est solution de (E_0) .

- 4/ Résoudre enfin l'équation différentielle (E).
- **5**/ Soit h la solution de (E) qui s'annule en 0 et telle que $\int_0^{\pi} h(x) dx = 1$. Exprimer h(x) en fonction de x.

Exercice 9 bac

Soit l'équation différentielle $(E): y''(x) + 4y(x) = 3\sin(x)$ (1)

On pose $y(x) = u(x) + \alpha \sin x$ où u est une nouvelle fonction inconnue et α une constante réelle.

- 1/ Pour quelle valeur de α la fonction u vérifie-t-elle l'équation différentielle u''(x) + 4u(x) = 0, (2) lorsque y vérifie (1) ?
- 2/a) Résoudre l'équation différentielle (2).
 - b) En déduire toutes les solutions de (1).
- 3/ Montrer qu'il n'existe qu'une solution de (1) vérifiant les conditions : $y(\frac{\pi}{2}) = 0$ et $y'(\pi) = 0$. Déterminer cette solution.

Exercice 10 (exercice 27 page 205)

Soit g la fonction définie sur IR par g(x) = cos(x) - sin(x).

- 1/ Montrer que pour tout réel x, $g'(x) = g(\pi x)$.
- **2**/ On se propose de déterminer toutes les fonctions f définies et dérivables sur IR vérifiant pour tout x réel, $f'(x) = f(\pi x)$.
 - a- Montrer que f est deux fois dérivables et que f est une solution de

Page: 3 Date: 03/01/2014

b- Déterminer les fonctions f.

EXERCICE N 3: (7 points)

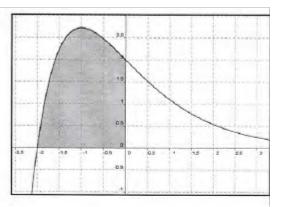
1/ On considère l'équation différentielle (E) : $y' + y = e^{-x}$

- a) Démontrer que la fonction u définie sur \mathbb{R} par $u(x) = xe^{-x}$ est une solution de (E).
- b) Résoudre l'équation différentielle (E_0) : y' + y = 0.
- c) Démontrer qu'une fonction y, définie et dérivable sur R, est solution de (E) si et seulement si y u est solution de (E₀).
- d) En déduire toutes les solutions de (E).
- 2/k étant un réel donné, on note f_k la fonction définie sur \mathbb{R} par : $f_k(x) = (x+k)e^{-x}$. Dresser le tableau de variation de f_k .

- a) Calculer Io.
- b) En utilisant une intégration par parties, démontrer l'égalité :

$$I_{n+1} = (-2)^{n+1} e^2 + (n+1) I_n$$
. En déduire I_1 et I_2 .

- 4/ Le graphique représente une courbe C_k d'une fonction f_k , dans un repère orthonormé, définie à la 2/ question .
 - a) À l'aide des renseignements donnés par le graphique, déterminer la valeur du nombre réel k correspondant.
 - b) Soit S l'aire de la partie hachurée (en unité d'aire) ; exprimer S en fonction de I_1 et I_0 et en déduire sa valeur exacte.



Exercice 12 d'après un devoir

Partie A

Soit l'équation différentielle (E) : $y' - 3y = \frac{-3e}{(1 + e^{-3x})^2}$.

On donne une fonction φ dérivable sur IR et la fonction f définie sur IR par :

$$f(x) = e^{-3x}\varphi(x)$$
; $\forall x \in IR$

- 1/ Montrer que f est dérivable sur IR et pour tout réel x, exprimer $\varphi'(x) 3\varphi(x)$ en fonction de f'(x).
- **2**/ Déterminer f de sorte que φ soit solution (E) et $\varphi(0) = \frac{e}{2}$.

Partie B

Soit la fonction f définie sur IR par $f(x) = \frac{e^{(1-3x)}}{1+e^{-3x}}$. On désigne par C_f la courbe représentative de f dans un repère orthogonal d'unité graphique 2 cm.

- 1/ Déterminer les limites de f en $-\infty$ et en $+\infty$, puis étudier les variations de f.
- **2**/ Tracer C_f .
- 3/ Pour α réel non nul, on pose $I_{\alpha} = \int_{0}^{\alpha} f(x) dx$.
 - **a** donner le signe et une interprétation graphique de I_{α} en fonction de α .
 - **b** Exprimer I_{α} en fonction de α .
 - **c** Déterminer la limte de I_{α} lorsque α tend vers $+\infty$.

Partie C

On définit sur IN* la suite u par $u_n = \int_0^1 f(x)e^{\frac{x}{n}}dx$.

- 1/a- Donner pour tout n de IN^* le signe de u_n .
 - **b** Donner le sens de variation de la suite u.
 - c- La suite u est-elle convergente?
- **2/a-** Montrer que pour tout n de IN*, $I_1 \le u_n \le e^{\frac{1}{n}}I_1$.
 - **b** En déduire la limite de la suite u et donner sa valeur exacte.

Devoir.tn
Toutes les matières, tous les niveaux...

Date: 03/01/2014

Page : 4