On considère la suite $(u_n)_{n\in IN^*}$ définie par $\forall n\in IN^*$; $u_n=\frac{n^n}{n!}$

1/ Montrer que
$$\forall n \in IN^*; \frac{u_{n+1}}{u_n} = \left(1 + \frac{1}{n}\right)^n$$

2/a- Montrer que
$$\forall$$
n \in IN* on a $\left(1+\frac{1}{n}\right)^n \geq 2$

- b-Déduire que $u_{n+1} \geq 2u_n$; $\forall n \in IN^*$
- c- Calculer alors $\lim_{n\to+\infty} (u_n)$.

Exercice 1

Soit (u_n) la suite réelle définie sur IN par : $u_0=0$ et $u_{n+1}=f(u_n); \ \forall n\in IN$ avec $f: x\mapsto \frac{1+x}{\sqrt{3+x^2}}; \ \forall x\in IR$

- 1/a- Dresser le tableau de variation de f sur IR+.
 - **b** Montrer que $\forall n \in IN$; $0 \leq u_n < 1$.
- **2**/ Montrer que $\forall n \in IN; \ \frac{1+u_n}{2} \leq u_{n+1} \quad (*)$
- **3**/ A l'aide de la relation (*), étudier la monotonie de la suite (u_n) .
- **4/a-** Montrer que $\forall n \in IN$; $0 < 1 u_{n+1} \le \frac{1}{2}(1 u_n)$ (on pourra profiter de la relation (*))
 - **b** Prouver donc que $\forall n \in IN; \ 1 \left(\frac{1}{2}\right)^n \leqslant u_n \prec 1.$
 - **c** Déterminer alors $\lim_{n\to\infty} u_n$.
- **5**/ Pour tout $n \in IN^*$ on pose $S_n = \sum_{k=1}^{k=n} u_k$.
 - **a-** Montrer que $\forall n \in IN; \ n-1+\left(\frac{1}{2}\right)^n \leqslant S_n < n.$
 - **b** Calculer alors $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{S_n}{n}$.

Exercice 2

Soit la suite réelle $(u_n)_{n\in I\!N}$ définie par :

$$u_0 = 5 \text{ et } u_{n+1} = \frac{4u_n^2 - u_n + 20}{u_n^2 + 4} \; ; \forall n \in IN$$

- 1/ Vérifier que $u_{n+1}-4=\frac{u_n+4}{u_n^2+4}$; $\forall n \in IN$ (1)
- **2**/ Montrer par récurrence que $\forall n \in IN$; $u_{2n} > 4$ et $u_{2n+1} < 4$. (on pourra profiter de (1))
- **3/a-** Prouver que . $\forall n \in IN; |u_{n+1} 4| \leq \frac{1}{4} |u_n 4|$
 - h.
 - **c** Montrer alors que (u_n) converge vers 4.
- **4**/ Soit la suite $(S_n)_{n \in IN}$ par : $S_n = \sum_{k=0}^{k=n} (u_k 4)$
 - **a-** Montrer que $\forall n \in IN$; $S_{2n+2} S_{2n} = (u_{2n+1} 4) \left[1 \frac{1}{u_{2n+1}^2 + 4} \right]$
 - Déduire que la suite (S_{2n}) est décroissante.
 - **b** Montrer que la suite (S_{2n+1}) est croissante.
 - **c** Prouver que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
 - **d-** Montrer que (S_n) converge vers un réel L et que $S_3 \prec L \prec S_4$.

Exercice 3 d'après un devoir

Soit la suite (u_n) définie sur IN* par : $u_2 = 2$ et $\forall n \in IN^*$ $u_{n+1} = 2 + \frac{n^2}{u_n}$.

- 1/a- Calculer u₂ et u₃.
 - **b** Montrer par récurrence que $\forall n \ge 2$; $n < u_n < n+1$.
 - **c** Déduire que (u_n) est strictement croissante puis calculer $\lim u_n$.
- **2**/ On pose $v_n = u_n n$ et $w_n = \frac{1}{v_n} 1$ pour tout $n \in IN^*$.
 - **a-** Calculer w_1 et montrer que $\forall n \in IN^*$; $w_{n+1} = \frac{1}{w_n + \frac{1}{n}}$.
 - **b** Montrer par récurrence que $\forall n \in IN^*$; $1 \frac{1}{n} \le w_n \le 1$.
 - **c** En déduire que les deux suites (w_n) et (v_n) sont convergentes et déterminer la limite de chacune.
- **3**/ On pose $S_n = \frac{1}{n^2} \sum_{k=1}^n k w_k$; $\forall n \in IN^*$
 - **a-** Montrer que $\forall n \in IN^*$; $\frac{1}{2} \frac{1}{2n} \leqslant S_n \leqslant \frac{1}{2} + \frac{1}{2n}$.
 - **b** En déduire que la suite (S_n) est convergente et donner sa limite.

Exercice 4 Origine inconnue (légèrement modifié)

Soit u la suite définie sur IN par $u_0 = 2$ et $u_{n+1} = \frac{2}{1 + u_n}$; $\forall n \in IN$

- **1/a-** Montrer que $\forall n \in IN$; $u_{n+2} 1 = \frac{u_n 1}{3 + u_n}$.
 - **b** Montrer par récurrence que $\forall n \in IN$; $u_n > 0$ et $u_{2n+1} < 1 < u_{2n}$.
- **2/a-** Vérifier que pour tout $n \in IN$; $u_{n+2} u_n = \frac{(1 u_n)(2 + u_n)}{3 + u_n}$
 - **b** En déduire que (u_{2n}) est décroissante et (u_{2n+1}) est croissante.
- **3**/ On pose pour tout $n \in IN$; $v_n = u_{2n} u_{2n+1}$.
 - **a** Montrer que pour tout $n \in IN$; $V_{n+1} \leq \frac{1}{2}v_n$
 - **b** En déduire que pour tout $n \in IN$; $v_n \leq \frac{4}{3} \left(\frac{1}{2}\right)^n$.
- **4/a-** Montrer que (u_{2n}) et (u_{2n+1}) sont deux suites adjacentes.
 - **b** En déduire que u converge et déterminer sa limite.

Exercice 5

Soit *f* la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{x}{1+x+x^2}$.

Soit $(u_n)la$ suite définie par $u_0 = 1$ et $\forall n \in IN$; $u_{n+1} = f(u_n)$

- **1/a** Montrer que $\forall n \in IN, u_n > 0$
 - **b** Montrer que (u_n) est monotone.
 - **c** En déduire que (u_n) est convergente et calculer sa limite.
- **2/a-** Montrer que $\forall n \in IN, f\left(\frac{1}{n}\right) \leqslant \frac{1}{n+1}$.
 - **b** Montrer que f est croissante sur [0,1].
 - **c** Montrer que $\forall n \in IN, u_n \leqslant \frac{1}{n+1}$
 - **d** Retrouver alors $\lim u_n$.
- **3/a-** Soit $n \in IN$. Exprimer $\frac{1}{u_{n+1}} \frac{1}{u_n}$ en fonction de u_n . **b-** En déduire que $\forall n \in IN$, $1 \leqslant \frac{1}{u_{n+1}} \frac{1}{u_n} \leqslant 1 + \frac{1}{n+1}$.
 - **c** Montrer que $\forall n \in IN^*, n \leq \frac{1}{u_n} 1 \leq n + 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$
 - **d** En déduire $\lim_{n\to+\infty} \frac{1}{u_n}$ puis retrouver $\lim_{n\to+\infty} u_n$.

4/a- Montrer que $\forall n \in IN, \ \frac{1}{2\sqrt{n+1}} \leqslant \sqrt{n+1} - \sqrt{n}$

b- Montrer que $\forall n \in IN, n \geqslant 5, \sqrt{n+1} \leqslant \frac{n}{2}$.

c- Montrer que $\forall n \in IN, n \geqslant 5$, $\sum_{k=1}^{n} \frac{1}{k} \leqslant \sqrt{n+1}$

d- Trouver $\lim_{n\to +\infty} (n u_n)$.