L. B. Monastir

P.P.: Ali Zouhaïer

Série n:6

4 èm e Math

Séance n: 2

Chapitre:

Nombres Complexes + Continuité et limites + ...

Exercice 1

Vrai - Faux

1/ Si
$$\bar{z} = \frac{4}{z}$$
 alors $|z| = 2$

2/ Si $M(1 + e^{2i\theta})$ avec $\theta \in IR$ alors M appartient au cercle de centre

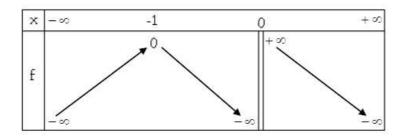
I(1) et de rayon 1.

3/ Si
$$z = 2e^{i\frac{2\pi}{3}}$$
 alors $arg(2+z) = \frac{\pi}{3}$ [2 π]

Exercice 2

On utilisant le tableau de variations si dessous d'une fonction f ; répondre au questions suivantes

1- Déterminer le domaine de définition de f



2- Calculer les limites suivantes

$$\lim f(\sqrt{x})$$
 ; $\lim f(\sqrt{x})$

$$\lim_{x\to +\infty} f\left(\sqrt{x}\right) \quad ; \quad \lim_{x\to +\infty} f\left(-1+\frac{1}{x}\right) \quad ; \quad \lim_{x\to -\infty} f\left(-1+\frac{1}{x}\right) \quad ; \quad \lim_{x\to 0^+} f\left(\frac{1}{x}\right) \qquad ; \quad \lim_{x\to +\infty} f\left(\frac{-1}{x^2+1}\right) = 0$$

$$\lim_{x\to 0^+} f\left(\frac{1}{x}\right)$$

$$\lim_{x\to+\infty} f\left(\frac{-1}{x^2+1}\right)$$

$$\lim_{x\to(-1)^+}\frac{1}{f(x)}$$

$$\lim_{x \to +\infty} f\left(\frac{2-x^2}{2+x^2}\right)$$

$$\lim_{x \to (-1)^+} \frac{1}{f(x)} \quad ; \quad \lim_{x \to +\infty} f\left(\frac{2-x^2}{2+x^2}\right) \quad ; \quad \lim_{x \to +\infty} f\left(\frac{x^2+1}{2x-1}\right) \quad ; \quad \lim_{x \to +\infty} \frac{1}{f(x)+3} \quad ; \quad \lim_{x \to 0^-} \frac{1}{f(x)+3}$$

$$\lim_{x\to +\infty} \frac{1}{f(x)+3}$$

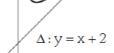
$$\lim_{x\to 0^-} \frac{1}{f(x)+3}$$

3- Déterminer les images des intervalles suivantes par f

EXERCICE 3

La figure 2 si contre désigne la courbe représentative d'une fonction f Ainsi que ces asymptotes

On utilisant la figure déterminer :

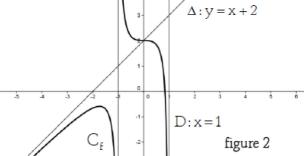


1- le domaine de définition de f

 $2\text{-}\lim_{x\to +\infty}f(x)\;;\;\;\lim_{x\to -\infty}f(x)\;;\;\;\lim_{x\to 1^*}f(x)\;;\;\lim_{x\to 1^*}f(x)$

$$\lim_{x\to (-1)^{\!\!-}} f(x) \ ; \ \lim_{x\to (-1)^{\!\!-}} f(x) \ ; \ \lim_{x\to +\infty} f(x) - x \ ; \ \lim_{x\to +\infty} \frac{f(x)}{x}$$

$$\lim_{x\to +\infty} f\bigg(\frac{1}{x}\bigg) \; ; \; \lim_{x\to 0} f\bigg(\frac{1-\cos x}{x}\bigg) \; ; \; \lim_{x\to 0} f\bigg(\frac{\sin x}{x}\bigg)$$



Exercice 4

d'après un devoir

Page: 1 Date: 03/01/2014

Soit $\theta \in]0$; $\pi[$ on pose $u = e^{2i\theta} - 1$

1/ Ecrire *u* sous forme exponentielle.

2/a- Ecrire 1+i sous forme exponentielle.

b- En déduire la forme exponentielle de z vérifiant $(1+i)z + 1 = e^{2i\theta}$.

3/ On donne $v = \cos 2\theta - 1 - i \sin 2\theta$

Vérifier que v = u puis préciser le module et un argument de v.

Exercice 5

d'après un devoir

Le plan complexe étant rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On considère les points A, B et C d'affixe respectives $z_A = 4i$, $z_B = 1 + i$ et $z_C = -1 + 3i$.

1/a- Donner la forme exponentielle de z_A et z_B .

b- En déduire que $z_A^8 = z_B^{32}$.

2/a- Montrer que ABC est un triangle rectangle en C.

b- Déterminer l'affixe du point D pour que ACBD est un rectangle.

3/ Soit $\theta \in]0$; $\pi[$ et M le point d'affixe $z_M = 1 - e^{i\theta}$

a- Montrer que lorsque θ varie sur $]0;\ \pi[$ le point M appartient à un cercle qu'on précisera.

b- Donner l'écriture exponentielle de z_M .

c- Déterminer O pour que O appartient à la médiatrice de [BM].

Exercice 6

bac

1/ Résoudre dans \mathbb{C} l'équation $(E): z^2 + (1-2i)z - 2i = 0$.

2/ Soit θ un réel. On considère l'équation

$$(E_{\theta}): z^2 + (1 - 2e^{i\theta})z - 2e^{i\theta} = 0$$

Résoudre dans \mathbb{C} l'équation (E_{θ}) . On désignera par z_1 la solution indépendante de θ et par z_2 l'autre solution.

3/ Dans le plan muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A et M d'affixes respectives z_1 et z_2 . Soit I le milieu de [AM]. On désigne par z_I l'affixe de I.

a- Vérifier que pour tout réel θ , $z_I + \frac{1}{2} = e^{i\theta}$.

b- Déterminer l'ensemble des points I lorsque θ varie dans $[0,2\pi[$.

c- Déterminer les valeurs de θ dans l'intervalle $[0,2\pi[$ pour lesquelles les points O,A et I sont alignés.

Exercice 7

bac

Pour $\theta \in]0,\pi[$ on considère l'équation

$$(E_{\theta}): z^2 - (1 + 2\cos\theta)z + 1 + e^{i\theta} = 0$$

1/a- Vérifier que $z' = e^{i\theta}$ est une solution de (E_{θ}) .

b- Déterminer alors l'autre solution z'' de (E_{θ}) .

2/ Le plan complexe P est rapporté à un repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$.

On considère les points A(1), M'(z') et M''(z'').

a- Exprimer en fonction de θ le nombre complexe $\frac{z''-1}{z'}$

b- Déterminer θ pour que $\overrightarrow{AM''}$ soit orthogonal à $\overrightarrow{OM'}$.

3/ Montrer que pour tout $\theta \in]0,\pi[$ le point M''(z'') varie sur un cercle que l'on caractérisera.

Exercice 8

1/a- Résoudre dans \mathbb{C} l'équation $(E_1): z^7 = 1$.

- **b** Exprimer les solutions en fonction de $a = e^{i\frac{2\pi}{7}}$.
- **c** Calculer alors la somme des solutions de (E_1) .
- **2/a-** Vérifier que 1 + i est une solution de l'équation $(E): (z 2i)^7 = 8 + 8i$
 - **b** Résoudre alors l'équation (E) (on donnera les solutions en fonction de a)
 - **c** Calculer alors la somme des solutions de (E).

Exercice 9 d'après un devoir

1/ Déterminer $\lim_{x\to +\infty} \sqrt{1+x^2} - x$.

- **2**/ Soit *f* la fonction défnie sur IR_+^* par $f(x) = (\sqrt{1+x^2} x)\sin(x)$.
 - **a-** Montrer que pour tout $x \in IR^*_+$ on a : $f(x) = \frac{\sin(x)}{\sqrt{1+x^2}+x}$
 - **b** Montrer que pour tout $x \in IR^*_+$ on a : $|f(x)| \le \frac{1}{\sqrt{1+x^2}+x}$.
 - **c** En déduire $\lim_{x\to +\infty} f(x)$.

Exercice 10

Soit
$$f: IR \to IR$$
; $x \mapsto \begin{cases} \sqrt{x^2 + 3} + 2x - 3 & \text{si } x \le 1 \\ \frac{\sin(x - 1)}{x - 1} & \text{si } x > 1 \end{cases}$

- **1/a)** Montrer que $\forall x \in]1, +\infty[$ on a : $\frac{-1}{x-1} \le f(x) \le \frac{1}{x-1}$.
 - **b**) Déduire $\lim_{x\to +\infty} f(x)$.
- **2**/ Calculer $\lim_{x \to -\infty} \frac{f(x)}{x}$; $\lim_{x \to -\infty} (f(x) x)$
- 3/ Prouver que f est continue en 1.

Exercice 11

Soit la fonction
$$f: IR \mapsto IR$$
; $x \mapsto \begin{cases} x^2 \left(1 - \cos\left(\frac{1}{x}\right)\right) & \text{Si } x \neq 0 \\ 0 & \text{Si } x = 0 \end{cases}$

- **1/a-** Montrer que $\lim_{x \to +\infty} f(x) = \frac{1}{2}$
 - **b** Prouver que f est une fonction paire.
 - **c** En déduire $\lim_{x\to -\infty} f(x)$.
 - d- Interpréter géométriquement les résultats de 1/a- et 1/b-.
- **2/a-** Montrer que pour tout $x \neq 0$; $0 \leqslant f(x) \leqslant 2x^2$.
 - **b** f est-elle continue en 0?
- **3**/a- Montrer que $\forall x \neq 0$; $\left| \frac{f(x)}{x} \right| \leq 2|x|$.
 - **b** Prouver que *f* est dérivable en 0 et intérpréter le résultat géométriquement.

Exercice 12

Soit la fonction f: $x \mapsto x^4 - 6x^2 + x$; $\forall x \in [0; 4]$

- 1/a- Dreser le tableau de variation de f'
 - b- Déterminer le nombre de solution de l'équation f'(x) = 0

- c- Donner un encadrement d'amplitude 0.5 de chaque solution
- d- Donner le tableau de signe de f'(x)
- 2/a- Dresser le tableau de variation de f.
 - b- Donner le nombre de solution de l'équation f(x) = 0.

Exercice 13

Soit $f:[0,1] \rightarrow [0,1]$ une fonction continue

- 1- Montrer que f a un point fixe (i.e. il existe c∈[0,1] tel que f(c)=c)
- 2- Montrer qu'il existe c dans [0,1] tel que $f(c) = \sqrt{c}$
- 3- On suppose que f(0) = 0 et f(1) = 1. Montrer qu'il existe c dans $\left[0, \frac{1}{2}\right]$ tel que $f(c + \frac{1}{2}) f(c) = \frac{1}{2}$

Exercice 14

1- Soit $f:[0,2] \to \mathbb{R}$ une fonction **continue** vérifiant f(0) = f(2)

Montrer qu'il existe c dans [0,1] tel que f(c) = f(c+1)

2- Soit $f:[0,1] \to \mathbb{R}$ une fonction continue vérifiant f(0) = f(1)

Montrer qu'il existe c dans $\left[0, \frac{1}{2}\right]$ tel que $f(c + \frac{1}{2}) = f(c)$

