Analogie entre les oscillations électriques et les oscillations mécaniques

Oscillateur		Electrique : Circuit RLC	Mécanique : Pendule élastique
	Coefficient d'inertie	Inductance L (enH)	Masse m (en kg)
Grandeurs	Coefficient de rappel	Inverse de la capacité	Raideur k (en N. m ⁻¹)
caractéristiques	Facteur dissipatif	Résistance R(en Ω)	Coefficient de frottement h
		$R = R_o + r$	(en kg. s ⁻¹)
Grandeurs oscillantes		Charge électrique q (en C)	Elongation x (en m)
		Intensité $i = \frac{dq}{dt}$ (en A)	Vitesse $V = \frac{dx}{dt}$ (en m. s ⁻¹)

Oscillations libres

			On charge le condensateur	On écarte le solide de sa position d'équilibre et on le lâche sans vitesse initiale
Excitation			On déplace un aimant devant la bobine (condensateur déchargé)	On lance le solide à partir de sa position d'équilibre avec une vitesse initiale
Equation différentielle des oscillations	Amorties		$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$	$m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + k x = 0$
	Non amorties		$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$ $\frac{d^2q}{dt^2} + \frac{1}{LC}q = 0 \text{ ou}$ $\frac{d^2q}{dt^2} + w_0^2 q = 0 \text{ avec}$	$m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + k x = 0$ $\frac{d^2x}{dt^2} + \frac{k}{m}x = 0 \text{ ou}$ $\frac{d^2x}{dt^2} + w_0^2 x = 0 \text{ avec}$
			$\mathbf{w_o} = \frac{1}{\sqrt{LC}}$	$\mathbf{w_o} = \sqrt{\frac{\mathbf{k}}{\mathbf{m}}}$
	Forme et expression		- électrique $E_e = \frac{1}{2C}q^2$	-potentielle élastique $E_p = \frac{1}{2} k x^2$
Energie de l'oscillateur			- magnétique $E_L = \frac{1}{2} L i^2$	- cinétique $E_c = \frac{1}{2} m v^2$
			- électromagnétique :	- mécanique :
			$E = \frac{1}{2C} q^2 + \frac{1}{2} L i^2$	$E = \frac{1}{2}k x^2 + \frac{1}{2}m v^2$
	Variation	Amorties	$rac{ ext{dE}}{ ext{dt}}$ = - R. i ² donc E décroit	$\frac{dE}{dt} = - h. v^2 donc E décroit$
		Non amorties	R = 0 donc E = constante	h = 0 donc E = constante
			$E = \frac{1}{2C} Q_{m}^{2} = \frac{1}{2} L I_{m}^{2}$	$E = \frac{1}{2} k X_{m}^{2} = \frac{1}{2} m V_{m}^{2}$

Oscillations forcées en régime sinusoïdal

Excitateur	GBF délivrant une tension u =U _m sin (wt + ℓu)	Moteur exerçant une force $F = F_m \sin(w t + \ell_F)$
Equation différentielle des oscillations	$L\frac{d^2q}{dt^2} + R_t\frac{dq}{dt} + \frac{1}{C}q = u$	$m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + kx = F$
Amplitude	Des intensités $I_{m} = \frac{Um}{\sqrt{Rt^{2} + (Lw - \frac{1}{cw})^{2}}}$	Des vitesses $V_{m} = \frac{Fm}{\sqrt{h^{2} + (mw - \frac{k}{w})^{2}}}$
	Des charges $Q_{m} = \frac{Um}{\sqrt{(R.w)^{2} + (Lw^{2} - \frac{1}{c})^{2}}} = \frac{Im}{w}$	Des élongations $X_{m} = \frac{Fm}{\sqrt{(hw)^{2} + (mw^{2} - k)^{2}}} = \frac{Vm}{w}$
	0 < ℓu -ℓq < π ou 0 < ℓu -ℓu _c < π -π/2 < ℓu -ℓi < π/2	$0 < \ell_F - \ell_X < \pi$ $-\pi/2 < \ell_F - \ell_V < \pi/2$
Déphasage	$eu_{c} < eu < eu_{L}$ $tg (eu -ei) = \frac{Lw - 1/CW}{R}$ $tg (eu -e_{q}) = \frac{RW}{\frac{1}{C} - LW^{2}}$	$\mathbf{e}_{f} < \mathbf{e}_{F} < \mathbf{e}_{T}$ $\mathbf{tg} (\mathbf{e}_{F} - \mathbf{e}_{V}) = \frac{mw - k/w}{h}$ $\mathbf{tg} (\mathbf{e}_{F} - \mathbf{e}_{X}) = \frac{h w}{k - m w^{2}}$
Impédance	$Z = \frac{Um}{Im} \text{ en } \Omega$ $Z = \sqrt{R^2 + (Lw - \frac{1}{cw})^2}$	$Z = \frac{Fm}{Vm} \text{en kg.s-}^{1}$ $Z = \sqrt{h^{2} + (mw - \frac{K}{w})^{2}}$

r			Lycée pilote de l'Ariana
	Condition de résonance	Des intensités : $N = N_0$ $U_m = R I_m, u = u_R, u_L(t) = -u_c(t)$ $Z = R, \ell u - \ell i = 0$ $Cos (\ell u - \ell i) = 1$ $\ell u - \ell u_c = \pi/2 \text{ rad}$ $\ell u - \ell u_L = -\pi/2 \text{ rad}$ $Lw I_m$ $Lw I_m$ $R I_m$ Des charges : $N_r = \sqrt{N0^2 - \frac{R^2}{8\pi^2 L^2}} < N_0$ $Pour R < \sqrt{2\frac{L}{c}} = R_i$ $Si R > R_i \text{ la réponse est linéaire}$ $(Résonance impossible)$	Des vitesses: $N = N_0$ $F_m = f_m.=h \ V_m , \ F(t) = -f(t)$ $Z = h , \ \ell_F - \ell_V = 0$ $Cos \ (\ell_F - \ell_V) = 1$ $\ell_F - \ell_X = \pi/2 \ rad$ $\ell_F - \ell_f = \pi \ rad$ $\ell_F - \ell_T = -\pi/2 \ rad$ $mw^2 X_m$ $k \ X_m \qquad h \ w \ X_m$ Des élongations: $N_r = \sqrt{N0^2 - \frac{h^2}{8\pi^2 m^2}} < N_0$ $Pour \ h < \sqrt{2mk} = h_1$ Si $h > h_1 \ la \ réponse \ est \ linéaire$ $(Résonance \ impossible)$
Résonance	Courbes de déphasages	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Courbes de résonance de qualité Q (à la résonance)	Des intensités I_m U_m/R $R (élevée)$ $Q m$ $Q = \frac{Ucm}{Um} = \frac{1}{R} \sqrt{\frac{L}{c}}$	Des vitesses V_m F_m/h h (faible) h (élevé) N_0
Puissance moyenne facteur de puissance		$P = U.I. \cos (\ell u - \ell i) = R I^2$	$P = F.V. \cos (\ell_F - \ell_V) = h v^2$
iacteur de puissance		$\cos (\ell u - \ell i) = \frac{R}{Z}$	$\cos\left(\mathbf{\ell}_{F} - \mathbf{\ell}_{V}\right) = \frac{h}{Z}$