

Le devoir comporte deux exercices de chimie et deux exercices de physique répartis sur quatre pages numérotées de 1/5 à 4/5. La page 5/5 est à remplir par l'élève et à remettre avec la copie.

Chimie: - Cinétique chimique.

Physique: - Circuit RC - Induction magnétique

CHIMIE (7 pts)

Exercice N°1:

L'oxydation des ions iodure I^- par les ions peroxodisulfate $S_2O_8^{\,2^-}$ est une réaction lente est total. L'équation de la réaction est :

$$2 \Gamma + S_2 O_8^{2-} \longrightarrow I_2 + 2 SO_4^{2-}$$

A une température T_1 on fait réagir à l'origine des dates n_1 mol d'ion iodure Γ avec n_2 mol d'ion peroxodisulfate $S_2O_2^{2^2}$. La variation au cours du temps de l'avancement x de la transformation chimique est donnée par **la courbe** $\mathbf{n}^{\circ}\mathbf{1}$ du document-1- de la page-5- à remettre avec la copie

- 1°) a- déterminer la vitesse instantanée de réaction aux instants t_1 = 8min et t_2 = 44min.
- b- Comment varie la vitesse au cours de temps. Préciser la cause de cette variation.
- c- En justifiant, déduire de ce qui précède la date pour laquelle la vitesse de la réaction est la plus élevée.
- 2°) a- Calculer la vitesse moyenne de la réaction entre t₁ et t₂.
- b- Préciser l'instant t₃ dont la vitesse instantanée est égale à la vitesse moyenne entre t₁ et t₂. La méthode sera figurée sur la courbe n°1 de document -1-
- 3°) On refait la même expérience avec les mêmes quantités de matières, mais en opérant à une température T₂.

La variation temporelle de l'avancement x de la réaction dans ce cas est donné par la courbe n°2 de document-1de la page-5- à remettre avec la copie

- a- En justifiant la réponse, comparer T₁ et T₂.
- b- A la température T_2 , le temps de la demi-réaction est $t_{1/2}$ = 43 min, déduire le temps de demi-réaction à la température T_1 .

Exercice N°2:

On étudie dans un laboratoire la réaction lente et totale entre les ions iodures Γ et les peroxydes d'hydrogène (eau oxygéné) H_2O_2 , on réalise un mélange contenant $V_1 = 20$ mL d'une solution aqueuse d'iodure de potassium (K^+,Γ) de concentration molaire C_1 , un volume $V_2 = 80$ mL d'eau oxygéné de concentration molaire C_2 et quelques gouttes d'acide sulfurique concentré. Cette transformation est modélisée par l'équation chimique suivante :

$$H_2O_{2 (aq)} + 2 I_{(aq)} + 2 H_3O_{(aq)}^+$$
 $I_{2 (aq)} + 4 H_2O_{(liq)}$

- 1°) a- Préciser l'évolution de la couleur au cours de cette transformation.
- b- peut-on réaliser cette réaction dans un milieu non acidifié. Justifier.
- 2°) Dresser le tableau d'avancement descriptif de cette réaction, on utilise n_1 et n_2 , les quantités de matières initiales respectivement des ions Γ et l'eau oxygéné H_2O_2 .
- 3°) Un test avec les ions Pb^{2+} à la fin d'évolution de la réaction, montre que le mélange réactionnel contient encore des ions iodures Γ
- a- Déterminer la concentration molaire C₂ de la solution d'eau oxygéné.
- b- Les ions iodures en excès réagissent avec les ions plomb pour donner un précipité jaune PbI2 selon l'équation :

$$Pb^{2+} + 2 \Gamma \longrightarrow PbI_{2 (sd)}$$

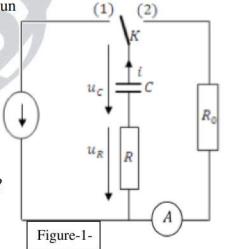
Le précipité séché et lavé, pèse une masse m = 1,38g

Déterminer la concentration molaire C_1 de la solution aqueuse (K^+, Γ) .

On donne: $M(Pb) = 207g.mol^{-1}$, $M(I) = 127g.mol^{-1}$ et $x_f = 4.10^{-3}$ mol

PHYSIQUE: (13 pts)

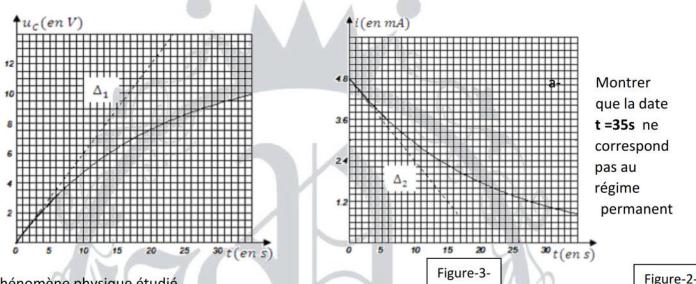
Exercice N°1: (7 pts)


A l'aide d'un dipôle générateur idéal de tension de fem E, d'un condensateur de capacité C initialement déchargé, de deux conducteurs ohmiques de résistances R et R₀, d'un ampèremètre et d'un (1) (2) commutateur K.

On réalise le circuit électrique de la figure-1-

Partie A

A un instant de date t=0s , on bascule K en position (1) et on suit l'évolution au cours du temps de la tension $\mathbf{u_c}$ aux bornes du condensateur et de l'intensité \mathbf{i} du courant électrique qui circule dans le circuit. A l'instant de date t= 35s , on ouvre K .


1°/ Quel est le phénomène physique qui se produit dans le circuit réalisé ? Justifier la réponse.

2°/ L'équation différentielle qui régit les variations au cours du temps de la tension u_c est donnée par :

$$\frac{du_c(t)}{dt} + \alpha u_c(t) = \beta$$

- a- Exprimer α et β en fonction des données de l'exercice.
- b- La fonction $u_c(t) = A(1 e^{-\lambda t})$ est une solution de l'équation différentielle ci-dessus. Exprimer A et λ en fonction de E et la constante de temps τ du dipôle RC étudié.
- 3°) L'étude expérimentale précédente a permis de tracée la courbe de la figure-2- et celle de la figure-3

du phénomène physique étudié.

- b- Déterminer graphiquement la valeur de τ et celle de E.
- En déduire la valeur de R et celle de C.

Partie B

On réalise la décharge électrique du condensateur en basculant le commutateur K en position (2) juste après son ouverture réaliser dans la partie A, cet instant sera considéré comme origine de temps. Au début de la décharge, l'ampèremètre numérique indique la valeur i = 2,5 mA

- a- Préciser la valeur algébrique du courant de décharge.
- b- Déterminer la résistance R₀.
- 2°) L'équation différentielle qui régit les variations au cours du temps du courant de décharge est :

$$\frac{di(t)}{dt} + \frac{1}{C(R_0 + R)}i(t) = 0$$

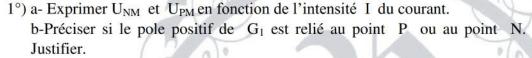
La solution de cette équation différentielle est $i(t) = \frac{U}{(R_0 + R)} e^{-\frac{1}{C(R_0 + R)}t}$ avec U est une constante.

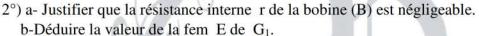
- Donner la valeur de U.
- Exprimer puis calculer la constante de τ' du circuit de décharge.

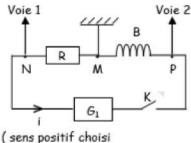
Page 3 | 5

Exercice N°2 (6 pts)

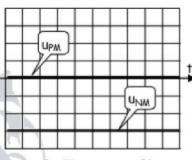
I/ Un circuit montés en série, comporte :

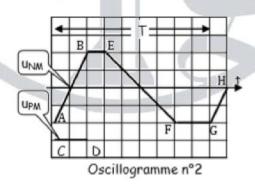

- Un générateur G₁ idéal de tension continu de fem E.
- Un résistor de résistance $R = 100\Omega$.
- Une bobine (B) d'inductance L et de résistance interne r.
- Un interrupteur K.

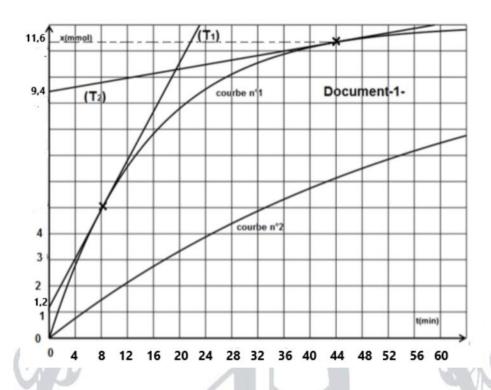

Un oscilloscope bi-courbe branché comme l'indique le schéma ci-contre, d'observer sur la voie 1 la tension u_{NM} et sur la voie 2 la tension u_{PM}


Réglage de l'oscilloscope :

- Base de temps : 0,2 ms/ div
- Sensibilité verticale des deux voies 1 et 2 : 1v/div.


On ferme K. Lorsque **le régime permanant** est établi, on observe sur l'écran de l'oscilloscope l'oscillogramme n°1.


sens positif choisi permet arbitrairement)



Oscillogramme nº1

II/ On remplace le générateur G_1 par un autre G_2 délivrant une tension variable de période T. Lorsqu'on ferme K, sur l'écran de l'oscilloscope on observe l'oscillogramme n^2 (seule la partie CD de $u_{PM}(t)$ a été représentée ; vous aurez à compléter cet oscillogramme).

- 1°) a- Exprimer $u_{NM}(t)$ et $u_{PM}(t)$ en fonction de i, $\frac{di}{dt}$ et des grandeurs caractéristiques du circuit.
- b- Exprimer $u_{PM}(t)$ en fonction de $u_{NM}(t)$. Déduire la valeur de l'inductance L.
- $2^{\circ})$ Compléter l'oscillogramme représentant $\,u_{PM}\left(t\right)\,$ de la figure-4- dela page- à remettre avec la copie.
- 3°) Pour une fréquence $N=55,55 \mathrm{KHz}$, peut-on observer sur l'écran de l'oscilloscope la tension u_{PM} . Justifier. Sachant que la sensibilité verticale maximale qu'on peut lire sur l'oscilloscope est $S_v=20 \mathrm{v/div}$

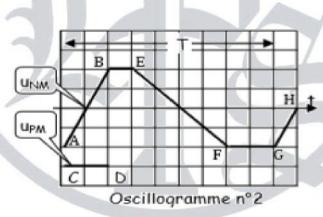


Figure-4-