LYCEE BEBLIL KHADRA DEVOIR DE SYNTHESE N°2 CLASSE : 4 EMEM.

PROF : SFAXI SALAH SC-PHYSIQUES DUREE : 3H

PARTIE CHIMIE (7pts)

Exercice N1(4pts)

On considère le couple acide base (AH/A^-) où AH est un acide faible dont sa solution aqueuse est de concentration molaire est C.

- 1) Dresser le tableau descriptif d'évolution du système en utilisant l'avancement volumique Y .
- 2) Montrer que la relation entre la constante d'acidité du couple (AH/A^{-}) et le taux d'avancement final T_f de la réaction et le pH de la solution s'écrit :

$$\mathbf{Ka} = \frac{\mathbf{10}^{-\mathbf{pH}} \cdot \tau \mathbf{f}}{\mathbf{1} - \tau \mathbf{f}}$$

3) On considère trois solutions acides de même concentration $C = 10^{-1}$ mol.L⁻¹ Seul l'un des trois acides est fort.

Solution	НСООН	HNO₃	HCIO
рН	2 ,4	1	4,25

- a) Pour chaque acide , calculer le taux d'avancement final T_f de la réaction d'ionisation de l'acide dans l'eau .
- b) Déduire que l'acide nitrique HNO3 est un acide fort et écrire son équation d'ionisation dans l'eau.
- c) En se référant de l'expression de Ka donnée dans la 2^{eme} question , calculer les constantes d'acidités Ka₁ et Ka₃ respectivement des couples (HCOOH/HCOO⁻) et (HCIO/CIO⁻)
- d) Ecrire l'équation de la réaction acido-basique entre l'acide HClO et l'ion méthanoate HCOO $^{-}$.
- e) Exprimer la constante d'équilibre K de cette réaction en fonction de Ka $_1$ et Ka $_3$ puis calculer sa valeur .

EXCERCICE N2(3,5points)

En dissolvant trois bases B_1 , B_2 , B_3 dans l'eau pure, on prépare respectivement trois solutions S_1 , S_2 , S_3 de concentrations initiales respectivement C_1 , C_2 , C_3 .

On mesure le pH des trois solutions S_1 , S_2 , S_3 ; on trouve les résultats portés dans le tableau suivant :

Solutions	S ₁	S ₂	S ₃
C (mol.L ⁻¹)	10-2	5.10 ⁻²	10-2
pН	12	11,3	11,3

- 1) Comparer la force des bases B_1 et B_3 , en utilisant les valeurs initiales de pH des solutions S_1 et S_3 .
- 2) Etude de la base B2:
 - a) Ecrire la réaction de dissolution de la base B2 dans l'eau.
 - b) Etablir l'expression du pH de la base B_2 en fonction de son pK a_2 et de sa concentration C_2 , sachant que B_2 est une base faiblement ionisée dans l'eau.
 - c) En déduire son pKa2.
- 3) Comparer la force des bases B_2 et B_3 .
- 4) A $V_2=10\text{cm}^3$ de S_2 , on ajoute un volume V_e d'eau le pH de la solution obtenue S_2 devient égal à 11 . Calculer V_e .

PARTIE PHYSIQUE (13pts)

EXERCICE N1 (6pts)

Un oscillateur mécanique est formé d'un ressort à spires non jointives , de raideur K , auquel est attaché un solide (S) de masse m=200g .

L'ensemble est placé sur un plan horizontal.

Le mouvement du centre d'inertie 6 de (5) est

étudier par rapport à l'axe (O, i), l'origine O

(R) (S) F(t)

Fig.5

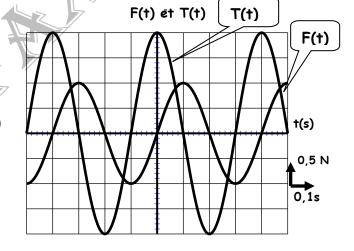
étant la position d'équilibre de (S).

On supposera que (S) est soumis à une force de frottement visqueux de la forme : f = -h.V où h est une constante positive et V est la vitesse de (S).

Les oscillations de (S) sont entretenues à l'aide d'une force excitatrice horizontale de valeur algébrique $F(t) = F_m \sin(\omega t + \varphi_F)$. La valeur de F_m est constante et la pulsation ω est réglable.

- 1) Etablir l'équation différentielle reliant x, sa dérivée première (dx/dt) et sa dérivée seconde (d^2x/dt^2).
- 2) On admet dans la suite que la solution de l'équation différentielle du mouvement de (5) est : $x(t) = X_m \cdot \sin(\omega t + \varphi_x)$.

Etablir , en utilisant la construction de FRESNEL , l'expression de :

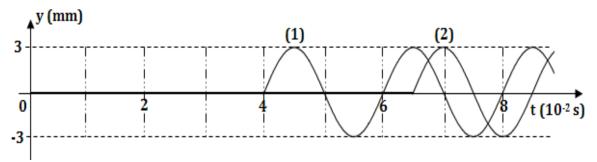

- X_m en fonction de F_m, h, w, k et m.
- tg (φ F - φ x) en fonction de h , w , k et m .

3) a) Montrer que l'expression de X_m peut se mettre sous la forme :

$$X_{m} = \frac{A}{\sqrt{\frac{1}{Q^{2}}(\frac{\omega}{\omega_{0}})^{2} + (1 - (\frac{\omega}{\omega_{0}})^{2})^{2}}}$$

Où w_0 est la pulsation propre de l'oscillateur et A , Q sont des Constantes que l'on exprimera en Fonction de F_m,h,m ,k et w_0

- b) Donner l'expression et la signification physique du paramètre Q de l'oscillateur électrique analogique à l'oscillateur mécanique étudié.
- c) La résonance d'élongation est obtenue pour une valeur w_r de w. Exprimer w_r en fonction de w_0 et Q .
- 4) On donne à la pulsation w de la force excitatrice la valeur w_1 . Une étude expérimentale permet de tracer les courbes représentant les variations en fonction du temps de la force F(t) et de la force T(t) tension du ressort.
- a) Déterminer le déphasage de F(t) par rapport à T(t), et en déduire que (S) effectue des oscillations forcées correspondant à la résonance de vitesse.
- b) Déterminer :
- * la pulsation w_1 .
- * la raideur k du ressort (R)
- * les expressions de F(t) , et de X(t)
- *le coefficient de frottement h .



EXERCICE N2(4pts)

Exercice n°2:

Une corde élastique assez longue et de faible raideur est tendue horizontalement entre l'extrémité libre S d'une lame vibrante et un support fixe à travers une pelote de coton.

- En imposant à S des vibrations sinusoïdales verticales de fréquence N et d'amplitude faible a la corde parait floue sous forme d'une bandelette rectangulaire de largeur 2a. Interpréter ce fait observé.
- 2) A fin d'étudier le mouvement de deux points M_1 et M_2 de la corde, situés au repos respectivement aux abscisses $x_1=40$ cm et $x_2=65$ cm, on utilise la méthode d'analyse optique. On obtient les chronogrammes (1) et (2) suivants :

- a) Justifier l'allure des chronogrammes obtenus.
- b) Déterminer graphiquement la période T des vibrations et la durée Δt mise par le front d'onde pour passer de M_1 à M_2 .
- c) En déduire la fréquence N des vibrations et la célérité v de l'onde.
- 3) Sachant que le mouvement de S débute à un instant pris comme origine des temps, à partir de sa position d'équilibre prise comme origine des élongations y.
 - a) Déterminer l'équation horaire de S.
- b) Comment vibrent M_1 et M_2 par rapport à la source ? Déterminer les élongations de S, M_1 et M_2 à l'instant t= 0,06s.
 - c) En déduire l'aspect de la corde à cet instant.

EXERCICE N3(3pts): (ETUDE D'UN DOCUMENT SCIENTIFIQUE)

Dans le cas où la partie tournante d'une machine n'est pas parfaitement équilibrée, elle joue par ses trépidations, le rôle d'excitateur pour les autres parties de la machine susceptible de vibrer.

Pour une voiture par exemple et pour certains régimes de rotation du moteur , on observe parfois des vibrations inconfortables ou bruyante dues à des pièces légèrement desserrées de la carrosserie . A des vitesses bien déterminées ces oscillations peuvent devenir tellement importantes et de même dangereuses , car elles peuvent provoquer la rupture de ces pièces .

C'est aussi l'une des raisons pour lesquelles , on équilibre les roues des véhicules en plaçant une masselotte de plomb sur la jante de la roue .

Pour les mêmes raisons, les machines représentant une partie tournante sont souvent munies de supports amortisseurs.

- 1) dans le texte , on assiste à une voiture en régime d'oscillations forcées . Préciser l'excitateur et le résonateur .
- 2) pourquoi ces oscillations sont plus importantes à des vitesses bien déterminées et non pas d'autres .
- 3) comment peut-on éviter les dangers que peut produire un tel phénomène. Expliquer .

