

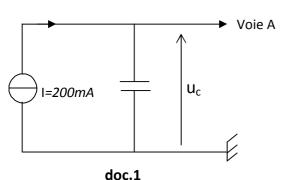
SÉRIE PHYSIQUE N°1 DIPOLE R.C

Exercice N°1

On associe en série un générateur basse fréquence (GBF), un résistor (R=10 K Ω), un condensateur de capacité C= 10 μ F et un interrupteur. Le GBF délivre une tension u, rectangulaire telle que $u(t)=U_0=10V$ sur l'intervalle [0; ½ T] et u(t)=0 sur l'intervalle [½ T; T].

1°-Représenter u(t) sur l'intervalle [o ; 2T].

2°-A l'instant **t=0** on ferme l'interrupteur et la tension u(t) prend la valeur U_{0} .


- Etablir l'équation différentielle caractérisant la tension $\mathbf{u}_{c}(\mathbf{t})$ aux bornes du condensateur pendant la première demi période de $\mathbf{u}(\mathbf{t})$.
- Faire un schéma en indiquant le sens du courant et les différentes tensions.
- On donne comme solution de l'équation différentielle : $u_c(t) = A(1-e^{(-\alpha t)})$. Déterminer littéralement et numériquement A et α .
- Que représente graphiquement \mathbf{A} et $\mathbf{\alpha}$.
- En déduire l'expression de u_c(t).
- Vérifier que la solution trouvée satisfait aux conditions initiales.
- Donner l'allure de la tension uc(t) dans le cas ou 1/2 T est très supérieur au produit R.C.
- En déduire l'énergie stockée à chaque instant par le condensateur.
- Que vaut cette énergie en fin de charge (1/2 T>>R.C)
- A quel instant t, la charge maximale est-elle atteinte au millième près ?
- 3°-A l'instant t=% T, la tension u(t) passe de U_0 à 0. on réalise un changement de repère temporel : on appelle t' la nouvelle variable pour la quelle t'=0 correspond à t=% T.
 - Etablir l'équation différentielle caractérisant la tension $\mathbf{u}_{c}(\mathbf{t'})$ aux bornes du condensateur pendant la deuxième demi-période de $\mathbf{u}(\mathbf{t})$.
 - Faire le schéma du montage en faisant apparaître l'intensité et les différentes tensions.
 - On donne comme solution de l'équation différentielle : $\mathbf{u_c(t)} = \mathbf{B.e^{(-\beta.t)}}$. Déterminer littéralement et numériquement \mathbf{B} et $\boldsymbol{\beta}$.
 - ullet Que représente physiquement $oldsymbol{eta}$. Quel rapport avec $oldsymbol{lpha}$?
 - En déduire l'expression de u_c(t').
 - Vérifier que la solution trouvée satisfait aux conditions initiales.
 - Donner l'allure de la tension u_c(t') dans le cas ou ½ T est très supérieur au produit R.C.
 - En déduire l'énergie stockée à chaque instant par le condensateur.
 - Que vaut cette énergie en fin de décharge (½ T>>R.C)
 - A quel instant t'2 la charge vaut-elle 37% de la charge maximale ?

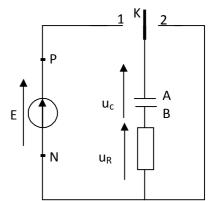

On donne : ln10 = 2,3 et $e^1 = 100/37$.

Exercice N°2

On souhaite déterminer la capacité d'un condensateur. Pour cela, on utilise le montage sur le **doc.1.** le générateur est un générateur de courant : il débite un courant d'intensité constante i(t)= I_0 . Un système d'acquisition permet d'obtenir les variations de la tension $u_c(t)$ en fonction du temps **doc.2.**

- 1°-Quelle est la relation entre l'intensité du courant, la charge électrique qu't) de l'armature A du condensateur et la durée t de charge ?
- 2°-Quelle est la relation liant la charge électrique $q_A(t)$, la capacité C du condensateur et la tension $u_c(t)$?
- 3°-Déterminer la valeur de la charge $q_A(t)$ à t = 250 ms.
- 4°-Quelle est la valeur de la capacité C du condensateur ?
- 5°-Déterminer l'énergie maximale emmagasinée par le condensateur. (t = 250 ms est la date à la fin de l'opération de charge).

Exercice N°3


I-Charge d'un condensateur

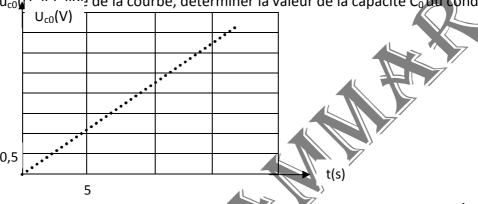
On réalise la charge d'un condensateur initialement déchargé grace au montage représenté ci-contre. L'interrupteur est en position 1.

- 1°-Etablir une relation entre les tensions U_{PN} , U_c et UR.
- 2°-Quelle est la relation entre i et u_c?
- 3°-Etablir l'équation différentielle vérifiée par uc.
- 4°-Vérifier que l'expression $u_c(t) \neq 6$. (1- $e^{-t/\tau}$) est solution de
- l'équation différentielle. En déduire l'expression de au .
- 5°-Calculer la constante de temps τ du dipole RC.
- 6°-Quelle est l'expression de i en fonction du temps t, de u_{PN} de τ et de R?
- 7°-Calculer les valeurs de u_c et de i à l'instant t = 0.
- 8°-Lorsque t tend vers l'infini, quelle est la valeur de de u_c et celle de i.
- 9°-Donner l'allure des courbes représentant u_c et i en fonction du temps t, pour des valeurs de t compris entre 0 et 5 τ .

II-Décharge du condensateur

- 1°-Etablir l'équation différentielle vérifiée par uc.
- 2°-Vérifier que l'expression $u_c(t) = 6.e^{-t/\tau}$ est solution de l'équation différentielle. En déduire l'expression de τ .
- 3°-Quelle est l'expression de i en fonction du temps, de $u_c(0)$ de R et de C.
- 4°-Calculer i(0), valeur de l'intensité du courant à t = 0.
- 5°-Lorsque t tend vers l'infini, quelle est la valeur de u_c et celle de i?
- 6°-Tracer l'allure des courbes représentant u_c(t) et i(t).

On donne R = 500Ω ; C = 400pF ; U_{PN} = 6V

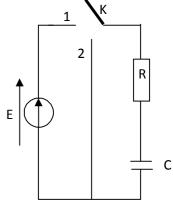

Exercice N°4

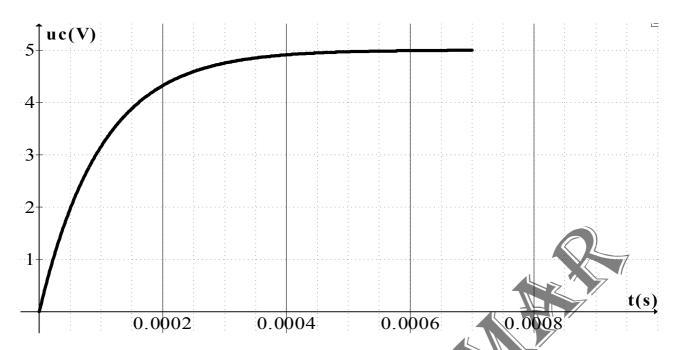
Partie I

On veut déterminer la capacité C_0 d'un condensateur, pour cela on réalise sa charge avec un générateur de courant. Ce générateur débite un courant d'intensité I = 0.5 mA. On réalise la saisie automatique de la tension u_c aux bornes du condensateur en fonction du temps. Le montage utilisé est schématisé ci-contre :

- 1°-Refaire le schéma du montage ; représenter U_{c0} , q (q>0), la voie Y et la masse de l'interface afin que l'on puisse visualiser u_{c0} .
- 2°-A l'instant t = 0 on ferme l'interrupteur K. Donner la relation entre I, C_0 , u_{c0} et t.

3°-On obtient la courbe $u_{c0}(t^1 - t^2) = 0$ de la courbe, déterminer la valeur de la capacité C_0 du condensateur.


Partie II


Etude de la charge d'un condensateur à travers un résistor.

On étudie la charge d'un condensateur à travers une rèsistance, on utilise alors un générateur de tension idéal de f.e.m E. On effectue une saisie automatique de tension $u_c(t)$. Le montage ci-contre

A l'instant initial, le condensateur est déjà chargé, on bascule alors l'interrupteur en position 2.

1°- Refaire le schéma du montage et représenter les tensions E, u_c et u_R ainsi que le sens de i, la voie Y et la masse permettant de visualiser la courbe du document ci-dessous. Donner la relation entre E, u_c et u_R .

2°-Montrer que le produit R.C est homogène à un temps.

3°-Déduire de la courbe la constante de temps τ du dipôle. Calculer la résistance R sachant que C = 1 μ F.

4°-Etablir l'équation différentielle à laquelle satisfait uc.

5°-Déterminer la valeur de la f.e.m E du générateur. Justifier

6°-Déterminer la valeur de l'intensité du courant i dans le circuit pour t = 0. Justifier

7°-Déterminer la valeur de l'intensité du courant i dans le circuit pour t > 5. τ . Justifier

8°-Montrer que
$$\frac{dd_d(d)}{dd}=10^d (5-d_d)$$
 (Relation 1).

9°-Pour vérifier la relation 1, on va tracer uc(t) en appliquant la méthode d'Euler :

$$d_d(d_{tild}) = d_d(d_d) + d_{dil}^{td_d}d$$
 Δd **Avec** $\Delta d = d_{tild} - d_d$: Δd étant le pas de calcul. Ici $\Delta d = 5.10^{-5}$ s

a-Compléter le tableau suivant :

t(s)	-10	5.10 ⁻⁵	10.10 ⁻⁵	15.10 ⁻⁵	20.10 ⁻⁵	25.10 ⁻⁵	30.10 ⁻⁵	35.10 ⁻⁵	40.10 ⁻⁵	45.10 ⁻⁵
u _c (V)	0	2,5	3,75							
du _c /dt	5.10 ⁴	2,5.10 ⁴								

b-Tracer u_c(t) obtenu par la méthode d'Euler. La relation 1 est-elle valable ?

 10° -A t = 5.10^{4} s, on bascule l'interrupteur en position 1. Représenter $u_c(t)$ ci-dessus. Justifier cette courbe avec quelques points.